Short version: With high confidence, warming from rising carbon dioxide will bring more very hot days and fewer very cold ones, more sea-level rise, stress for endangered species, plant fertilization but heat stress, more-intense peak rains but drying in many times and places, and many other impacts. Small changes will bring winners and losers, but losers will grow to far outnumber winners if we continue on our current path and cause very large changes.
Friendlier but longer version: For the next decade or two, the biggest uncertainties about future climate are linked to things we cannot know—will there be a big volcanic eruption in the next decade, or an extra El Nino or La Nina? The expected warming over a decade or two for any of the choices we are likely to make is more-or-less the same size as the cooling effects of a big volcano or La Nina. For a small number of decades after that, the biggest uncertainties are probably linked to things we don’t fully understand about the climate. Recall that the equilibrium warming from doubled CO2 is estimated to be between 1.5 and 4.5°C. The big difference between the high and low estimates might be reduced by better climate science, although the interactions among feedbacks mean that greatly reducing the uncertainty is quite difficult. But, by late in the century, the uncertainties related to volcanoes or climate sensitivity are smaller than the uncertainties related to what we humans choose to do. And remember, at least the younger students in this class are likely to live longer than that!
Because our choices are so important, climate scientists normally don’t discuss predictions, choosing instead to provide projections: “If people decide to do xxxx, then the climate will do yyyy, with an uncertainty of zzzz.” By replacing the “xxxx” with different things we might do, the science shows policymakers and other people the changes yyyy±zzzz that their decisions would cause.
The graph just above shows the history of atmospheric CO2 over the last millennium as measured in bubbles from ice cores, including the very close agreement between ice-core and atmospheric data during the decades of overlap, and then shows various possible futures. These future “scenarios” were prepared to bracket likely paths we may follow, and provide enough curves so that one of them may prove to be fairly close. So far, we’re running near the highest of the projections, but close to the others because the different scenarios don’t diverge a lot until further in the future. None of these paths assumes that we take major efforts to reduce greenhouse-gas emissions, which could lower any of them.
Notice that in all of these scenarios the projected changes are much larger than those to date, with CO2 still rising beyond 2100. (The world does NOT end in 2100!) With notable uncertainties, fossil fuels may become rare by the time CO2 reaches the top of the chart around 1000 ppm, or may be common enough to drive CO2 more than twice that high, giving us two or three doublings from the relatively stable level of approximately 280 ppm before the industrial revolution.
We could estimate future temperature by taking the climate sensitivity of around 3°C for doubled CO2 (or between 1.5 and 4.5°C), and the two or three doublings, calculating a warming, and reducing that a bit because the warming lags the CO2 a little and the CO2 will start down before peak warming is reached. We get much more information by taking our best models, run by different groups in different ways, forcing them with the scenarios, and studying the results.
The figure shows the past warming, which is just under 1°C or roughly 1°F, together with the future warmings for the different scenarios. The lowermost future line assumes that the atmospheric composition had been stabilized in the year 2000, with no further rise of CO2. Warming continues in that scenario because some heat is now going into the ocean, keeping the air cooler than it will be as ocean warming catches up. Note that it is already too late for us to follow that path because we have raised CO2 since 2000. Also, we are committed to some additional warming if we choose to stabilize the atmospheric concentrations at any point in any of the scenarios, again because of the slow warming of the ocean.
In all the other scenarios, if we don’t make major efforts to reduce future CO2 emissions, the future warming is projected to be quite large compared to the past warming, and the temperature is still going up as the next century starts. Also notice the uncertainty bars on the right, showing that warming may be a little less than the most-likely estimate, or a little more, or somewhat more than that.
The figures here show the projected warming, and uncertainties. The maps are the projected warming for the next decade (2020-2029, center) and the last decade in this century (2090-2099, right), for different possible emissions scenarios, with more CO2 emitted as you go down through the maps. The estimates were made with Atmosphere-Ocean General Circulation Models (AOGCMs), the big climate models of the world. And, the maps here are the averages of the projections from all of the models participating in this effort—tests in the past have shown that this average across all the models generally does better than any single model (the “wisdom of the crowd” in models).
Warming is projected to be especially slow in those places where ocean water sinks into the deep ocean, and especially fast in the Arctic. Projected warming is generally larger over land than over the ocean. Because the Earth is mostly ocean, the numbers usually given for “global warming” are closer to ocean than to land values. But, almost everyone lives on land, so the great majority of people are expected to experience above-average warming!
The panels on the left show the uncertainties in the projected warming. Notice for the 2090-2099 projections (the larger warmings, in red), that the most-likely warming tends to be towards the low end of the possible warmings. We have already seen that the most-likely impacts of a specified warming are on the low-damage side of the possible impacts, and now we see that the most-likely warming is on the low side of the possible warmings. Both of these have the same effect: the less you trust climate scientists to get the most-likely estimate correct, the more worried you probably should be about climate change, because the numbers most frequently quoted by scientists are on the optimistic side of the possibilities.
This slightly complex figure shows projections of future precipitation. In general, the models project that wet places will get wetter, dry places dryer, and the dry subtropics will expand somewhat into currently wetter regions toward the poles. Evaporation is also expected to go up with warming, and many of the models find summertime drying in places we grow much of our food, so agriculture may be reduced more than you might think from looking at this, as we discuss after a quick look at sea level.
LOTS of other issues come up because climate affects so many things that we care about. A few of the larger issues include sea level rise, more floods and droughts, agriculture impacts, and impacts on people.
Warming causes ocean water to expand and melts mountain glaciers. (Despite a few outliers or oddities, the great majority of mountain glaciers are melting.) The big ice sheets of Greenland and Antarctica are also losing mass. With continuing warming, we expect more sea-level rise. The recent rise has been about 3 millimeters per year, or just over an inch per decade, and sea level has risen almost a foot (just under 1/3 m) over the last century or so. We expect sea-level rise to continue and probably accelerate moderately, with at least a slight chance of a large acceleration if the big ice sheets change rapidly. A foot of sea-level rise might not seem like a lot when the biggest hurricanes can have storm surges of 10 or rarely even 20 feet (3 to 6 m). But, the last foot may be the one that goes over the levee or into the subway tunnels, so even a relatively small change in sea level can have large consequences for cities and other human-built structures.
As noted above, there is a tendency for wet places to get wetter and dry places to get drier, with the subtropical dry zones expanding somewhat. When conditions are right to rain, warmer air holds more water (by roughly 7% per degree C or 4% per degree F), so all else equal, a warmer climate can deliver more rain in a hurry. But, evaporation speeds up with warming, too. All winter, Dr. Alley’s tomato patch is damp or frozen; in the summer, just a week or two after a downpour, he needs to water the plants again. A more summer-like world is likely to have more variability in the water cycle, with more floods and more droughts.
Plants need CO2 to grow, and higher CO2 levels will give faster plant growth. But, plants need many other things, too; in experiments with extra CO2 added to natural ecosystems, an initial growth spurt lasts a few years before settling down to only slightly faster growth than before the CO2 addition because the plants need more of those other things to sustain fast growth. If CO2 is added to farm plants that also are supplied those other things, faster growth can continue, but the gain is still not huge.
Working against this fertilization effect of CO2, the projected increase in floods and droughts would make farming more difficult. Farmers have learned to handle the bugs and weeds that now annoy them, but changing climate allows new ones to invade.
Perhaps the biggest concern is heat stress on crops. At present, anomalously hot weather reduces crop growth in many agricultural regions even if the plants have enough water, fertilizer and protection from bugs and weeds. For much of the world, continuing our present path until late in this century is projected to give average summer conditions hotter than the hottest summer up to 2006 (the last data available for an influential study). Record highs are rising with average temperatures, and expected to continue doing so. Thus, unless crop breeders become highly successful at developing heat-resistant varieties, heat stress may become quite damaging if we cause large warming.
Note also that the tropics are the big belt around the middle of the Earth, the polar regions are the small caps on the ends, and mountain ranges taper to points at the top, so simply moving poleward or up the mountains to follow cooler conditions involves losing ground. In addition, we now grow mid-latitude crops in soil that was transported by glaciers from higher latitudes or altitudes, so moving poleward in at least some places leaves most of the soil behind. Greenlanders are doing a little farming in special places such as on raised beaches from the ice age, but much of Greenland is too rocky for good farming, as shown below. So if Greenland's ice melts, raising sea level about 7.3 m (24 feet) averaged around the globe, and flooding valuable coastal property, the land revealed beneath the former ice sheet is not likely to be a wonderfully fertile replacement.
Overall, the effects of the rising CO2 and the changing climate are expected to be mildly positive for farms for the near term, switching to negative and becoming increasingly worse beyond a few decades. One study found losses for US corn and soybeans of 30% to 82% by late in this century, depending on the scenario used and other factors.
Too hot or too cold cause problems for people. But, we have largely mastered the art of putting on coats, boots, hats and gloves, whereas personal air conditioning is not well-advanced. Thus, in too-hot places we tend to stay inside air conditioned places or be unhappy, whereas in cold places we go skiing or snowmobiling. As warming reduces the snowy season in some places, fewer automobile accidents and airports closed by blizzards will be beneficial. But, the arrival of unexpected heat can be dangerous—the highly anomalous European heat wave of 2003 is estimated to have killed 70,000 people. Adaptations such as expansion of air-conditioning tend to reduce the health impacts when heat continues.
Still, humans and other animals risk damage or death when conditions are too hot. How hot is too hot depends on humidity (we can take higher temperatures when it is drier), and on exercise level. A recent study found that, averaged across the world’s human population, heat already here reduces the ability for people to work outside in the hottest months by about 10%. If we continue to release CO2 rapidly, this is projected to rise to a 20% reduction in work by 2050, 40% by 2100 and perhaps 60% by the end of the next century. These losses are concentrated in the warmer parts of the world, where they can be very large.
Climate affects almost everything somehow, so a great number of other issues can be raised, from huge to tiny. Vines seem to like carbon dioxide, for example, so poison ivy is expected to grow well, and vines may out-compete large trees in tropical rain forests.
More broadly, almost all ecosystems will be perturbed, often in major ways. Rare and endangered species may have difficulty migrating, especially if they are persisting in a park or preserve surrounded by human-controlled landscapes, or if they are migrating up a mountain and eventually having nowhere further to climb. Acidification of the oceans, and loss of oxygen with warming, will affect marine species and those of us who eat them. Loss of wintertime cold doesn’t mean that everyone in the high latitudes is about to get malaria, but one line of defense will go away. Changes in hurricane frequency are still highly uncertain, but the strongest storms seem likely to get stronger, and so much of the damage is done by the strongest storms. Cooling towers for power plants expect enough, and cold enough, water, and may experience troubles. And on, and on.
Very generally, we are adapted to the climate we have. In the short term, almost any change has associated costs. If two regions with different climates simply swapped their climates, for example, both would have wrong-sized air conditioners and heaters, too many or too few snow plows and swimming pools, less-than-optimal seeds for crops, etc. All of these can be fixed, but not for free.
If changes remain small, there are likely to be winners and losers. Warming may make beach resorts happier, but ski areas less happy. Rare and endangered species, and people trying to live traditional lifestyles, may be pushed to the edge by even small changes. For most people, if you have winter that interferes with travel and other activities, air conditioners so you can work in the summer, and bulldozers to build walls against the rising sea, a little warming is not especially costly; if you lack winter, air conditioners and bulldozers, even a little warming is likely to make your life at least a little harder.
But, if the temperature continues to rise, and the big hotter-than-we-like belt around the equator expands towards the poles, life is projected to get harder for most people in most places.
There are real uncertainties, so things really may end up better than this. But recall that, because breaking is easier than building, we don’t see how raising CO2 greatly and rapidly will create Eden, but we do see at least a slight chance of huge and damaging changes.
One way to look at the future is shown in the figure. Different things you might care about are shown by the different columns, and the risks from warming are shown by the increasingly orange-red (saturated) color going up in the columns. Another way to look at the issue is that damages are projected to go up faster than temperature; the first degree of warming is nearly free, but each degree beyond that costs more than the previous one did. The first degree has allowed us to test our models and learn that they are doing well; the next degrees really matter.
Please recognize that these projections do not include major human efforts to reduce emissions of CO2 and other greenhouse gases. And, we are certainly capable of making such reductions, or of adopting other approaches that might reduce the warming while supplying plenty of energy.
So, in the next Unit, we’ll look at some of the options. Then, we’ll return to Economics, Ethics and Policies that might address the paired issues of getting valuable energy for many people while reducing damages from climate change.
The costs or benefits of changing climate depend on how much the climate changes. If the amount of change remains small, say 1˚C or so, who is likely to be most negatively impacted?
Click for answer.
Links
[1] https://www.youtube.com/@duttoninstitute
[2] https://www.youtube.com/watch?v=l_L1QxfIC_0
[3] https://www.youtube.com/watch?v=7nY4-rruqRI
[4] https://www.youtube.com/watch?v=o-b_AhfrTRI
[5] https://www.youtube.com/watch?v=yo5iHSTqoGQ
[6] https://www.gfdl.noaa.gov/knutson-climate-impact-of-quadrupling-co2/
[7] https://www.youtube.com/watch?v=LpuZAr0NoXA
[8] https://www3.epa.gov/climatechange/kids/impacts/signs/droughts.html
[9] https://www.youtube.com/watch?v=ixotug1KS0o&t=2s
[10] https://www.usda.gov/
[11] https://www.youtube.com/watch?v=dYprxmclitU
[12] https://www.youtube.com/watch?v=1a_t9b_O83U