For those who care a lot about climate change and reducing the carbon intensity of our energy systems, nuclear seems like a bit of a Faustian bargain. On the one hand, nuclear power plants have all of the advantages of fossil fuel plants – they offer controllable and (in the hands of skilled operators) highly reliable electricity supplies; can be built at very large scales (and increasingly smaller scales), and cost very little to operate once they are built – but have basically none of the greenhouse gas emissions. On the other hand, there are serious challenges that come with having an electrical system that depends a lot on nuclear. Plants are very expensive to build, which is why the cost of nuclear energy is so high (more than 6 times as much as wind power). Managing waste products has been difficult, particularly in the United States, where most of our waste is stored at the power plants in a "temporary" mode. Finland is about to begin storing their waste in a safe, long-term facility deep within the Earth, but a similar solution in the US, at Yucca Mountain in Nevada, has stalled due to politics. And when nuclear power plants fail – as happened at Three Mile Island in Pennsylvania; Chernobyl in what is now Ukraine; and most recently Fukushima Daichi in Japan – the results can range from striking terror into the hearts of thousands of people (as was the case with Three Mile Island, which as far as we can tell did not actually kill anyone outside of the plant) to utterly catastrophic (Chernobyl and Fukushima). As bad as these accidents are, it is important to understand that nuclear power plants cannot explode like a nuclear weapon — a fact that not everyone is aware of.
Part of the reason that nuclear energy can become an emotional topic is that nuclear power plants are extremely complex, despite their basic similarity to any other power plant that uses a steam turbine design. While it’s easy to understand how burning coal or natural gas can produce steam (and greenhouse gas emissions) to run a power plant, how nuclear reactions manage to create steam is a bit more complex. When you add in the thorny problem of how to manage a waste product that could potentially pose environmental and human health risks for thousands of years, it’s easy to see why a number of countries are deciding that the potential social costs are not worth the benefits. On the other hand, the global nuclear power industry actually has one of the best safety records of any energy source. Because nuclear power plants can be operated relatively safely in the right hands and because producing electricity from nuclear plants releases virtually no air pollution, some countries are actually seeking to rapidly increase their nuclear energy production. But, as we saw in the introduction to this module, on a global scale, nuclear energy production has not been growing over the past 20 years.
Is nuclear power truly renewable? The supplies of uranium ore that we know about today, given our current rate of consumption, will last for more than 150 years; increased exploration could increase that by a bit, but the fact remains that it is a finite resource. So, nuclear energy, as it is mainly produced today, using the isotope U-235, is not truly renewable. But, there are other types of nuclear reactors called "breeder" reactors, which use the far more abundant stable isotope of uranium, U-238, as the primary fuel. Because there is so much U-238, nuclear energy generated with these breeder reactors is virtually limitless.
Maggie Koerth-Baker has a really great article on how nuclear power plants work, with a focus on the nuclear fission reaction and what mechanisms in a nuclear power plant keep the reaction from spinning out of control. It was written right after the incident at Fukushima Daichi. Before continuing on, please have a look at the article, and pay some attention not only to how plants work, but how the nuclear reactions inside the plants are controlled. The article also has a really nice description of how reactions at nuclear power plants can keep cascading even after the plant has been “shut down,” which is basically what causes meltdowns like those that happened in the Three Mile Island and Chernobyl power plants.
Nuclear Energy 101: Inside the "black box" of Power Plants [1]
As described in the article linked above, when a reactor core shuts down, it doesn't go all the way to zero immediately. It takes several days for the reactor to stop producing heat, which is typically what leads to meltdowns when they happen. Why isn't shutting down a reactor core like flipping a switch?
Click for the answer.
The basics of a nuclear power plant aren’t actually all that complicated. In fact, there is a remarkable similarity to fossil fuel plants, in that what ultimately happens in a nuclear power plant is that steam is produced, to drive a turbine inside a generator, which produces electricity. But unlike fossil fuel plants, which heat water by burning fuel, the water in nuclear power plants is heated through an atomic reaction.
There are two basic types of atomic reactions. The first is nuclear fusion, with which we are all intimately familiar, whether we know it or not. It is nuclear fusion that keeps the sun hot. In nuclear fusion, atoms are joined together. The word “joined” here is a bit of scientific jargon. In reality, the energy is released when atoms collide together at really high speeds. If you have ever seen two cars collide at high speed, you have some idea of how energy could be released when things hit each other. Despite years of research into nuclear fusion, scientists have never been able to engineer a controllable reaction in a laboratory environment. If they could, most of the world’s energy problems would basically be solved overnight, since the amount of energy released through a fusion reaction would be massive. But for now, fusion goes in the “maybe someday” pile.
The second type of nuclear reaction is fission, which is the opposite of fusion – atoms are broken apart, which also releases energy. U-235 is naturally radioactive, meaning that the nucleus is unstable, and it will eventually give off some energy and parts of its nucleus to get to a stable atom, but this takes a long time — the half-life is 700 million years. The figure below illustrates roughly how this works. An atom (in the case of a nuclear power plant, a uranium-235 atom) is bombarded with neutrons, some of which are absorbed by the nucleus, so the U-235 becomes U-236 — this makes it even more unstable, so the atom splits apart into two lighter atoms called the daughter products. U-236 splits into krypton (Kr-92) and barium (Ba-141), and it also releases energy in the form of heat, gamma radiation (bad for us) and 3 neutrons. (Note that if you add up the weight of the daughter products and the neutrons, 92+141+3, you get 236, the weight of the U-236 that split apart). These neutrons come hurtling out of the original atom and smash into other uranium-235 atoms, triggering 3 more U-235 fission reactions, each of which generates 3 more neutrons. As you can see, before long, there are a lot of neutrons and thus a lot of reactions and thus a lot of heat, which heat the water surrounding the fuel rods, creating steam, spinning the turbine — just like many of the other systems for making electricity.
The nuclear fission reaction described above is an example of a positive feedback mechanism that will naturally tend to speed up until all of the fuel (the U-235) is used up. This means that it has a tendency to create more and more heat, and if left unchecked, this would cause the water in the reactor vessel to get too hot and build up too much pressure for the reactor to contain — then you would have a big steam explosion, such as happened at Chernobyl. To control this reaction, the reactor core has a series of control rods, made of materials that absorb the neutrons emitted during a fission reaction. So the control rods allow the operators to adjust the rate of the reaction and thus the rate of heat production.
There are two basic types of nuclear power plants that are in operation today. The first, and most common, is the Pressurized Water Reactor (PWR), which is illustrated in the animation below. In a PWR, hot water passes through the reactor core (where it absorbs the heat from the nuclear fission reactions) and is then pumped through a heat exchanger, where it heats another fluid that produces steam, powering the turbine. The primary advantage to this type of design is that the water in the primary loop (which passes through the core) does not actually come into contact with the fluid in the steam generator, so unless pipes or valves break there is no risk of contamination or radioactive water leaking from the plant. The Boiling Water Reactor (BWR), illustrated in the next figure, utilizes a somewhat simpler design, where the water that runs through the core is allowed to vaporize to steam, thus powering the turbine to generate electricity. While the design is simpler, it does mean that the steam entering the turbine can be radioactive.
Whether one design is inherently more advantageous than another is difficult to say. Both types have been involved in major nuclear power plant incidents. The reactor at Three Mile Island was a PWR while the reactor at Fukushima was a BWR, so the potential exists for problems at either type of plant. It is perhaps worth mentioning that the Three Mile Island incident was likely due as much to human error and poor design of the reactor’s control system at least as much as to the reactor design itself. The reactor at Chernobyl was an unusual Soviet design called a “light water graphite reactor” that was not really designed for use as a commercial nuclear power plant but was adapted for that use anyway. The World Nuclear Association [5] has a nice description of the Chernobyl plant technology with a description of what went wrong (here too, human error played a central role).
Advanced PWRs have been developed that use more passive designs to keep the reactor from overheating, without any pumps or offsite power required. Westinghouse has developed one such design, the AP1000, which is currently being deployed in China. For those who are interested, more information on passive PWR designs can be found at Westinghouse Nuclear [6].
Nuclear fuel rods typically last for 3-5 years, and when a rod is "spent" it still contains some fissionable 235-U along with a host of other radioactive elements. So, what do we do with these spent rods? Many people would argue that recycling is a good thing. In the nuclear energy industry, recycling of spent nuclear fuel is a somewhat contentious topic. Many countries, including those European countries that still use nuclear energy, recycle spent fuel into new fuel for re-use. The United States does not do this, preferring a "once-through" fuel cycle for reasons of security as well as economics. Understanding the pros and cons of recycling nuclear fuel requires some understanding of how fuel for nuclear power plants is mined and fabricated.
The figure above outlines the many steps necessary to get uranium out of the ground and into a nuclear power plant. After extraction and processing (“milling”), uranium ore is transported to conversion facilities to remove impurities. The next step in the nuclear fuel cycle is enrichment. Owing to security concerns, all enrichment for the US commercial nuclear industry takes place at one government-owned gas diffusion facility in Paducah, Kentucky. Enriched uranium is then transported to one of several commercial fuel fabrication facilities where the fuel rods are manufactured. In the U.S., fuel fabrication is a competitive industry; private firms compete to provide finished fuel to nuclear power plants. Nuclear fuel rods are generally not purchased directly from the government. Nuclear fission and disposal of spent fuel rods constitute the final steps of the nuclear fuel cycle in the US
The US is heavily dependent on the global market for uranium and nuclear fuel. n 2017, 90% of uranium oxide supplies used to develop nuclear fuel in the US come from outside of the country. The main suppliers for the US are Canada (24%), Kazahkstan (20%), Australia (18%), and Russia (13%). Proposals to open new uranium mines in both the western and eastern United States have been met with resistance, primarily on environmental grounds.
Current US policy prohibits the reprocessing of spent nuclear fuel, for two primary reasons. First is economics – the fuel costs for nuclear power plants are already among the lowest of any non-renewable power generation resource. Once nuclear power plants are built, if they are well-run they cost very little to operate. While the recycling of spent nuclear fuel would eliminate the need for virgin uranium ore to be mined or for additional fuel to be purchased on the world market, it is not at all clear whether the benefits of doing so outweigh the costs of reprocessing. The other reason is nuclear security. The process of recycling nuclear fuel involves the separation of uranium and plutonium from the spent fuel rods. There have been concerns regarding plutonium falling into the wrong hands and contributing to the proliferation of nuclear weapons.
One very serious concern with nuclear power has to do with the highly radioactive waste from the process. Much of the waste needs to be isolated for at least 10,000 years. All civilian nuclear waste was intended to be stored permanently at a repository in Yucca Mountain, Nevada. Yucca Mountain was chosen as a waste repository site back in 1987 and we have spent over $15 billion investigating the site and developing 65 km of tunnels deep underground to store the waste. Currently, it could hold 65,000 tons of waste, but we have 94,000 tons of radioactive waste in temporary storage at nuclear plants. The Yucca Mountain facility is not currently operational and significant uncertainties exist as to whether it will ever be used. In the interim, spent nuclear waste will continue to be stored on-site at the power plants.
Climatewire and the New York Times [7] recently published a nice piece that looks at both sides of the reprocessing debate.
There are currently several hundred operating nuclear power plants in the world, spread over a few dozen countries, with over a hundred more “proposed” nuclear power plants (these may or may not get built, depending on economic and political factors in the relevant countries). The US still has the largest number of plants, with about 100 currently operating. France’s economy is the most dependent on nuclear energy, with more than 75% of electricity in that country coming from nuclear power plants. Countries with fleets of nuclear power are primarily wealthier nations, such as the US and European countries, but developing nations are really the biggest growth area, particularly China. Prior to the Fukushima incident, other Asian nations besides China had plans to grow their nuclear fleets, but whether that growth will materialize is highly uncertain. In response to concerns regarding the safety of nuclear power plants and waste disposal/management issues, some European countries have enacted various policies mandating the phase-out of nuclear energy, including Austria, Sweden, Germany, Italy, and Belgium. Other countries, including Spain and Switzerland, have imposed a moratorium on the construction of new nuclear power plants. Of the countries that have decided to phase out nuclear energy, Germany has been among the most aggressive following the Fukushima incident. Because of concerns over electricity supply and costs, however, some countries have delayed or back-stepped on plans to phase out nuclear energy.
Links
[1] http://boingboing.net/2011/03/12/nuclear-energy-insid.html
[2] http://en.wikipedia.org/wiki/Pressurized_water_reactor
[3] http://www.gnu.org/copyleft/fdl.html
[4] https://commons.wikimedia.org/wiki/Category:GFDL
[5] https://www.world-nuclear.org/ukraine-information/chernobyl-accident.aspx
[6] http://www.westinghousenuclear.com/
[7] http://www.nytimes.com/cwire/2009/05/18/18climatewire-is-the-solution-to-the-us-nuclear-waste-prob-12208.html?pagewanted=all
[8] http://www.world-nuclear.org/information-library/current-and-future-generation/plans-for-new-reactors-worldwide.aspx
[9] http://www.world-nuclear.org/information-library/current-and-future-generation/nuclear-power-in-the-world-today.aspx