GEOG 160
Mapping Our Changing World

5. Scale

PrintPrint

You hear the word "scale" often when you work around people who produce or use geographic information. If you listen closely, you will notice that the term has several different meanings, depending on the context in which it is used. You will hear talk about the scales of geographic phenomena and about the scales at which phenomena are represented on maps and aerial imagery. You may even hear the word used as a verb, as in "scaling a map" or "downscaling." The goal of this section is to help you learn to tell these different meanings apart, and to be able to use concepts of scale to help make sense of geographic data. 

Scale: Scope or Extent

Often "scale" is used as a synonym for "scope," or "extent." For example, the title of an international research project called The Large Scale Biosphere-Atmosphere Experiment in Amazonia (1999) uses the term "large scale" to describe a comprehensive study of environmental systems operating across a large region. This usage is common not only among environmental scientists, but also among the general public. The term scale can also take on other meanings.

Scale: Measurement 

The word "scale" can also be used as a synonym for a ruler--a measurement scale. Because data consist of symbols that represent measurements of phenomena, it is important to understand the reference systems used to take the measurements in the first place. In this section we'll consider a measurement scale known as the geographic coordinate system that is used to specify positions on the Earth's roughly spherical surface. In other sections we will encounter two-dimensional (plane) coordinate systems, as well as the measurement scales used to specify attribute data.

Scale: Changing a map's size

The term "scale" is sometimes used as a verb. To scale a map is to reproduce it at a different size. For instance, if you photographically reduce a 1:100,000-scale map to 50 percent of its original width and height, the result would be one-quarter the area of the original. Obviously the map scale of the reduction would be smaller too: 1/2 x 1/100,000 = 1/200,000. Because of the inaccuracies inherent in all geographic data, particularly in small scale maps, scrupulous geographic information specialists avoid enlarging source maps. To do so is to exaggerate generalizations and errors. 

Map Scale

Map scale is the proportion between a distance on a map and a corresponding distance on the ground (Dm / Dg). By convention, the proportion is expressed as a representative fraction in which map distance (Dm) is always reduced to 1. The representative fraction 1:100,000, for example, means that a section of road that measures 1 unit in length on a map stands for a section of road on the ground that is 100,000 units long. If we were to change the scale of the map such that the length of the section of road on the map was reduced to, say, 0.1 units in length, we would have created a smaller-scale map whose representative fraction is 0.1:100,000, or 1:1,000,000. When we talk about large- and small-scale maps and geographic data, then, we are talking about the relative sizes and levels of detail of the features represented in the data. In general, the larger the map scale, the more detail is shown. This tendency is illustrated below.

 

***Insert Flash Illustration***

Geographic data are generalized according to scale. Click on the buttons beneath the map to zoom in and out on the town of Gorham. (Adapted from Thompson, 1988)

Representing Map Scale

There are several methods for conveying map scale to a map user....

Another way to express map scale is with a graphic (or "bar") scale. Unlike representative fractions, graphic scales remain true when maps are shrunk or magnified. Most maps include a bar scale like the one shown above left. Some also express map scale as a representative fraction. Either way, the implication is that scale is uniform across the map. In fact, except for maps that show only very small areas, scale varies across every map.  This follows from the fact that positions on the nearly-spherical Earth must be transformed to positions on two-dimensional sheets of paper. Systematic transformations of this kind are called map projections. As we will discuss in greater depth later in this chapter, all map projections are accompanied by deformation of features in some or all areas of the map. This deformation causes map scale to vary across the map. Representative fractions may therefore specify map scale along a line at which deformation is minimal (nominal scale). Bar scales denote only the nominal or average map scale. Variable scales, like the one illustrated above right, show how scale varies, in this case by latitude, due to deformation caused by map projection.

 ***IMAGE- Graphic Scales ****

Graphic scales.

 

One of the defining characteristics of topographic maps is that scale is consistent across each map and within each map series. This isn't true for aerial imagery, however, except for images that have been orthorectified. As discussed in Chapter 6, large scale maps are typically derived from aerial imagery. One of the challenges associated with using air photos as sources of map data is that the scale of an aerial image varies from place to place as a function of the elevation of the terrain shown in the scene. Assuming that the aircraft carrying the camera maintains a constant flying height (which pilots of such aircraft try very hard to do), the distance between the camera and the ground varies along each flight path. This causes air photo scale to be larger where the terrain is higher and smaller where the terrain lower. An "orthorectified" image is one in which variations in scale caused by variations in terrain elevation (among other effects) have been removed. 


In the following sections you will learn more about the process of converting the three-dimensional earth into a two-dimensional visual representation, the map. As you move through the chapter keep in mind the different meanings for the term "scale" and try to think about how it relates to the process of map creation.