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Appendix A

The Elements of Statistics

A.1. INTRODUCTION

This appendix is intended to remind you of some of the basic ideas, con-
cepts, and results of classical statistics, which you may have forgotten. If
you have never encountered any of these ideas before, this is not the place
to start—you really need to read one of the hundreds of introductory
statistics texts or take a class in introductory statistics. If you have
taken any introductory statistics class, what follows should be reasonably
familiar. Most of the information in this appendix is useful background for
the main text, although you can probably survive without a detailed, in-
depth knowledge of it all. A good geographical introduction to many of
these ideas, which also introduces some of the more spatial issues that we
focus on in this book, is Peter Rogerson’s Statistical Methods for
Geography (2001).

We may introduce different terminology and symbols from those you
have encountered elsewhere, so you should get used to those used here,
as they appear in the main text. Indeed, the presentation of this book may
be more mathematical in places than you are used to, so we start with
some notes on mathematical notation. This is not intended to put you off,
and it really shouldn’t. Many of the concepts of spatial analysis are diffi-
cult to express concisely without mathematical notation. Therefore, you
will get much further if you put a little effort into coming to grips with the
notation. The effort will also make it easier to understand the spatial
analysis literature, since journal articles and most textbooks simply
assume that you know these things. They also tend to use slightly differ-
ent symbols each time, so it’s better if you have an idea of the principles
behind the notation.
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Preliminary Notes on Notation

A single instance of some variable or quantity is usually denoted by a
lowercase italicized letter symbol. Sometimes the symbol might be the initial
letter of the quantity we're talking about, say h for height or d for distance.
More often, in introducing a statistical measure, we don’t really care what
the numbers represent, because they could be anything, so we just use one of
the commonly used mathematical symbols, say x or y. Commonly used let-
ters are x, y, 2, n, m, and k. In the main text, these occur frequently and
generally have the meanings described in Table A.1. In addition to these six,
you will note that d, w, and s also occur frequently in spatial analysis. The
reason for the use of boldface type for s is made clear in Appendix B, where
vectors and matrices are discussed.

A familiar aspect of mathematical notation is that letters from the Greek
alphabet are used alongside the Roman alphabet letters that you are used
to. You may already be familiar with mu (x) for a population mean, sigma
(o) for population standard deviation, chi (x) for a particular statistical
distribution, and pi (x) for ... well, just for pi. In general, we try to avoid
using any more Greek symbols than these. The reason for introducing
symbols is so that we can use mathematical notation to talk about related
values or to indicate mathematical operations that we want to perform on
sets of values. So if h (or z) represents our height values, h? (or 2°) indicates
height value squared. The symbols are a very concise way of saying the
same thing, and that’s very important when we describe more complex
operations on data sets.

Two symbols that you will see a lot are i and j. However, i and j normally
appear in a particular way. To describe complex operations on sets of

Table A.1 Commonly Used Symbols and Their Meaning in This Book

Symbol Meaning
x The “easting” geographical coordinate or a general data value
y The “northing” geographical coordinate or a general data value

z,ab The numerical value of some measurement recorded at the
geographical coordinates (x, y)

n,m The number of observations in a data set

k Either an arbitrary constant or, sometimes, the number of entities
in a spatial neighborhood

d Distance

w The strength or weight of interaction between locations

8 An arbitrary (x, y) location
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values, we need another notational device: subscripts. Subscripts are small
italic letters or numbers below and to the right of normal mathematical
symbols: The i in z is a subseript. A subscript is used to signify that
there may be more than one item of the type denoted by the symbol, so z
stands in for a series or set of z values: zy, 22, zg, and so on. This has various
uses:

o A set of values is written between braces, so that {2y, zg, ..., 2,1, 2, )
tells us that there are n elements in this set of z values, If required,
the set as a whole may be denoted by a capital letter: Z. A typical
value from the set Z is denoted z; and we can abbreviate the previous
partial listing of z’s to simply Z = (z;}, where it is understood that the
set has n elements.

e In spatial analysis, it is common for the subscripts to refer to loca-
tions at which observations have been made and for the same sub-
seripts to be used across a number of different data sets. Thus, &i; and
t; refer to the values of two different observations—say, height and
temperature—at the same location (i.e., location number 7).

e Subscripts may also be used to distinguish different calculations of
(say) the same statistic on different populations or samples. Thus, p4
and pp would denote the means of two different data sets, A and B.

The symbols i and j usually appear as subscripts in one or other of these
ways. A particularly common usage is to denote summation operations,
which are indicated by use of the ) symbol (another Greek letter, this
time capital sigma). This is where subscripts come into their own, because
we can specify a range of values that are summed to produce a result. Thus,
the sum

a) +ag+az+ay+as+ag (A1)

is denoted

Z a; (A.2)

indicating that summation of a set of a values should be carried out on all
the elements from a; to ag. For a set of n “a” values this becomes

f=n

Z a; (A.3)
i=1
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which is usually abbreviated to either
Y (A4)
=1

or to
Z a, (A5)

where the number of values in the set of ‘a’s is understood to be n. If instead
of the simple sum we wanted the sum of the squares of the a values we have

i al (A.6)

i=1

instead. Or perhaps we have two data sets, A and B, and we want the sum
of the products of the a and b values at each location. This would be denoted

i G,b,' (A~7)
i=1

In spatial analysis, more complex operations might be carried out between
two sets of values, and we may then need two summation operators. For
example,

c=k (zi - zj)2 (A.8)
i=] j=1

indicates that c is to be calculated in two stages. First, we take each z value
in turn (the outer i subscript) and sum the square of its value minus every z
value in turn (the j subscript). You can figure this out by imagining ﬁrst
setting ¢ to 1 and calculating the inner sum, whlch would be ¥, (z; -

We then set i bo 2 and do the summation ZJ (zg - z,) and so on, all the way
to 2, (z, - z,) The final double summation is the sum of all of these indi-
vidual sums, and ¢ is equal to this sum multiplied by k. This will seem
complex at first, but you will get used to it.

In the next section you will see immediately how these notational tools
make it easy to write down operations like finding the mean value of a data
set. Other elements of notation will be introduced as they are required and
explained in the appendices and main text.
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A.2. DESCRIBING DATA

The most fundamental operation in statistics is describing data. The mea-
sures described below are commonly used to describe the overall character-
istics of a set of data.

Population Parameters

These are presented without comment. A population mean p is given by

“:

= |-

i i (A.9)
=1

population variance o® is given by
=23 @ pf (A.10)
i=1

and population standard deviation o is given by

/1 8 .
o= ;,.;(a‘—")l (A.11)

These statistics are referred to as population parameters.

Sample Statistics

The statistics above are based on the entire population of interest, which
may not be known. Most descriptive statistics are calculated for a sample of
the entire population. They therefore have two purposes: First, they are
summary descriptions of the sample data, and second, they serve as esti-
mates of the corresponding population parameters. The sample mean is

. . 18
a—u—’—z.z:;a, (A.12)

the sample variance s* is

9_.a_ 1 ¢ a2
= .= Z(a, a) (A.13)
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and the sample standard deviation s is given by

5 1 ¢ =12
3=0=J _lg(a,-—a) (A.14)

In all these expressions the * (“hat”) symbol indicates that the expression is
an estimate of the corresponding population parameter. Note the different
symbols for these sample statistics relative to the corresponding population
statistics.

Sample statistics may be used as unbiased estimators of the correspond-
ing population parameters, and a major part of inferential statistics is con-
cerned with determining how good an estimate a sample statistic is of the
corresponding population parameter. Note particularly the denominator
(n—1) in the sample variance and standard deviation statistics. This
reflects the loss of one degree of freedom (df) in the sample statistic case
because we know that Y (a; —a) =0, so that given the values of a and
a,---a,.;, the value of a, is known. The expressions shown, using the
(n — 1) denominator, are known to produce better estimates of the corre-
sponding population parameters than those obtained using n.

Together, the mean and variance or standard deviation provide a conve-
nient summary description of a data set. The mean is a measure of central
tendency and is a typical value somewhere in the middle of all the values in
the data set. The variance and standard deviation are measures of spread,
indicative of how dispersed are the values in the data set.

Z-Scores

The z-score of a value a; relative to its population is given by

R, (A.15)

o
and relative to a sample by

a,~-—é
§

(A.16)

2=

The z-score indicates the place of a particular value in a data set relative to
the mean, standardized with respect to the standard deviation. z=0 is
equivalent to the sample mean, z > 0 is a value greater than the mean
and z < 0 is less than the mean. The z-score is used extensively in determin-
ing confidence intervals and in assessing statistical significance.
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Median, Percentiles, Quartiles, and Box Plots

Other descriptive statistics are based on sorting the values in a data set into
numerical order and describing them according to their position in the
ordered list. The first percentile in a data set is the value below which
1%, and above which 99% of the data values are found. Other percentiles
are defined similarly, and certain percentiles are frequently used as sum-
mary statistics. The 50th percentile is the median, sometimes denoted M.
Half the values in a data set are below the median and half are above. Like
the mean, the median is a measure of central tendency. Comparison of the
mean and median may indicate whether or not a data set is skewed. If
a > My, this indicates that high values in the data set are pulling the
mean above the median; such data are right skewed. Conversely, if
a <M,, a few low values may be ‘pulling’ the mean below the median
and the data are left skewed.

Skewed data sets are common in human geography. A good example is
often provided by ethnicity data in administrative districts. For example,
Figure A.1 is a histogram for the African-American percentage of popula-
tion in the 67 Florida counties as estimated for 1999. The strong right skew
in these data is illustrated by the histogram, with almost half of all the
counties having African-American populations of 10% or less. The right
skew is confirmed by the mean and median of these data. The median
percent African-American is 11.65%, whereas the mean value is higher at
14.17% and the small numbers of counties with higher percentages of
African-Americans pull the mean value up relative to the median. The

Florida by county
Percent African-American
30 = n=67
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Percent African-American
Figure A1 Example of right skewed data in human geography.
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median often gives a better indication of what constitutes a typical value in
a data set.

Two other percentiles are frequently reported. These are the lower and
upper quartiles of a data set, which are the 25th and 75th percentiles,
respectively. If we denote these values by Q.5 and Q5 respectively, the
interquartile range (IQR) of a data set is given by

IQR = Q75 — Qa5 (A.17)

The interquartile range contains half the data values in a data set and is
indicative of the range of values. The interquartile range, as a measure of
data spread, is less affected by extreme values than are simpler measures
such as the range (the maximum value minus the minimum value) or even
the variance and standard deviation.

A useful graphic that gives a good summary picture of a data set is a box
plot. A number of variations on the theme exist (so that it is important to
state the way in which any plot that you present is defined), but the
diagram on the left-hand side of Figure A.2 is typical. This plot summarizes
the same Florida percent African-American data as in Figure A.1. The box
itself is drawn to extend from the lower to the upper quartile value. The
horizontal line near the center of the box indicates the median value. The
whiskers on the plot extend to the lowest and highest data values within
one-and-a-half IQRs below @25 and above Q5. Any values beyond these
limits, that is, less than Q.5 — 1.5(IQR) or greater than @;5 + 1.5(IQR),
are regarded as outliers and marked individually with point symbols. If
either the minimum or maximum data value lies inside the 1.5 IQR limits,
the fences at the ends of the whiskers are drawn at the minimum or max-
imum value as appropriate, This presentation gives a good general picture

i“‘ “_J American |I”
e —
15w I ]

of
Figure A.2 Box plots of Florida ethnicity data.
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of the data distribution. In the example illustrated on the left, the minimum
value is greater than @5 — 1.5(IQR), at around 2%, and is marked by the
lower fence. There are four outlier values above @75 + 1.5(IQR), three at
around 40%, and one at around 55%.

Several data sets may be compared using parallel box plots. This has been
done on the right-hand side of Figure A.2, where Florida county data for
percent Hispanic and percent white have been added to the plot. Note that
box plots may also be drawn horizontally, as here. This example shows that
the African-American and Hispanic population distributions are both right
skewed, although the typical variability among African-American popula-
tions is greater. The white population distribution is left skewed, on the
other hand, and has higher typical values.

A.3. PROBABILITY THEORY

A great deal of statistics depends on the ideas of probability theory.
Probability theory is a mathematical way of dealing with unpredictable
events. It enables us to assign probabilities to events on a scale from 0
(will never happen) to 1 (will definitely happen). The most powerful aspect
of probability theory is that it provides standard ways of calculating the
probability of complex composite events—for example, A and B happening
when C does not happen—given estimates for the probability of each of the
individual events A, B, and C happening on its own.

In probability theory, an event is a defined as a collection of observations
in which we are interested. To calculate the probability of an event, we first
enumerate all the possible observations and count them. Then we determine
how many of the possible observations satisfy the conditions for the event
we are interested in to have occurred. The probability of the event is the
number of outcomes that satisfy the event definition, divided by the total
number of possible outcomes. For example, the probability of you winning
the big prize in a lottery is given by

number of ways you win
number of combinations that could come up

P(lottery win) = (A.18)

Note that the notation P(A) is read as “the probability of event A occurring.”
Since the number of possible ways that you can win (with one ticket) is 1,
and the number of possible combinations of numbers that could be drawn
is usually very large (in the UK national lottery, it is 13,983,816), the
probability of winning the lottery is usually very small. In the UK national
lottery it is
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P(lottery win) = m = 0.00000007T1511 (A.19)
1 1

which is practically 0, meaning that it probably won't be you,

Here are some basic probability results with which you should be famil-
iar. For an event A and its complement NOT A, the total probability is
always 1:

PA)+ PINOT A) =1 (A.20)

You can think of this as the something must happen rule, because it follows
from the fact that a well-defined event A will either happen or not happen,
since it can't “sort of” happen. This rule is probably obvious, but it is uzeful
to remember, because it is often easier to enumerate observations that oo
not constitute the event of interest occurring than those which do, that is, to
caleulate PINOT A), from which it is easy to determine P(A). An example of
this is: What is the probability of any two students in a class of 26 sharing a
birthday? This i3 a hard question until you realize that it is easier to caleu-
late the opposite probability—that no two students in the class share the
same birthday. Each student after the first can have a birthday on one of
only 365, then 364, then 363, and so0 on, of the remaining “unused” days in
the year if they are not to share a birthday with a student considered
previously, This gives the probability that no two students share a birthday
as (366/366) x (364/366) = ... x (342/366) == 0.432, so that the probability
that any two students will share a birthday is 1 — 0.432 = 0,568,

For two events A and B, the probability of either event oceurring, denoted
FP(A U B) is given by

P(AUB) = P(A) + P(B) — P(A N B) (A.21)

where P{A M B) denotes the probability of both A and B ocourring. In the
special case where two events are mutually exclusive and cannot occur
together, P{A N B) = 0, so that

P(AUB) = P(A) + P(B) (A.22)

For example, if' 4 is the event “drawing a face card from a deck of cards”,
and B is the event “drawing an ace from a deck of cards,” the events are
mutually exclusive, since a card cannot be an ace and a face card simulta-
neously. We have P(A) = &, P(B) = &, so that P(A U B) = - = 30.8%. On the
other hand, if A is the event “drawing a red card from a deck of cards” and
B is as before, A and B are no longer mutually exclusive, since there are
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two red aces in the pack. The various probabilities are now PiA) =
#=31.PB)=7, and PANB) = 2 = J. so that P(A U B), the probability of
drawing a card that is either red or an ace is } 4 L — 35 = 15 = 53.8%.
Conditional probability refers to the probability of events given certain
preconditions. The probability of A given B, written P(A : B) is given by

PA:B)= % (A.29)

This is obvious if you think about it. If B must happen, P(B) is proportional
to the number of all possible outcomes, Similarly, P(A 1 B) is proportional to
the number of events that count, that is, those where A has oceurred given
that B has also occurred. Equation (A.23) then follows as a direct conse-
quence of our definition of probability.

A particularly important concept is event independence, Two events are
independent if the occurrence of one has no effect at all on the likelihood of
the other. In this case,

P(A:B)=P(A)
(A.24)
P(B:A)=P(B)
Inserting the first of these into equation (A.23), gives us
P(An B)
PAy=— A25
(A) P(B) ! )

which we can rearrange to get the important result for independent events
A and B that

P(A N B) = P(A)P(B) (A.26)

This result is the basis for the analytic calculation of many results for
complex probabilities and one reason why the assumption of event
independence is often important in statistics. As an example of independent
events, think of two dice being rolled simultaneously. If event A is “die 1
comes up a six” and event B is “die 2 comes up a six,” the events are
independent, since the outcome on one die can have no posgible effect on
the outcome of the other. Thus the probability that both dice come up six is
PAPB)=Lxi=21=278%.
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Calculation of Permutations and Combinations

A very common requirement in probability caleulations is to determine the
numher of possible permutations or combinations of n elements in various
situations. Permutations are sets of elements where the order in which they
are arranged is regarded as significant, so that ABC is regarded as different
from CBA. When we are counting combinations, ABC and CBA are equiva-
lent outcomes, There are actually six permutations of these three elements:
ABC, ACB, BAC, BCA, CAB, and CBA, but they all count as only one
combination. The number of permutations of k elements taken from a set
of n elements, without replacement, is given by

n!

(n— &)

Pl = (A.27)

where x! denotes the fuoctorial of x and is given by xx(x—1)x
(x—2)x---x% 3x 21, and 0! is defined equal to 1. The equivalent expres-
sion for the number of combinations of & elements, which may be chosen
from a set of n elements is

" mn nl
Ck:(k)zk,'!l{n——k]! (A.28)

These two expressions turn out to be important in many situations, and we
will use the combinations expression to derive the expected frequency dis-
tribution associated with complete spatial randomness (see Chapter 3).

Word of Warning about Probability Theory

The power of probability theory comes at a price: We have to learn to think
of events in a very particular way, a way that may not always be applicable,
The problem lies in the fact that probability theory works best in a world of
repeatable observations, the classic examples being the rolling of dice and
the flipping of coins. In this world we assign definite probabilities to out-
comes based on simple calculations (the probability of rolling a six is {, the
probability of heads is {) and over repeated trials (many rolls of the die, or
many flips of a coin) we expect outcomes to match these caleulations. If they
don’t match, we suspect a loaded die or unfair coin. In fact, this is a very
particular concept of probability. There are at least three distinet uses of
the term:
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1. A priori or theoretical, where we can precisely calculate probabil-
ities ahead, based on the “physics.” This is the probability asso-
ciated with dice, coins, and cards.

2, A posteriori probability is often used in geography. The assumption
is that historical data may be projected forward in time in a pre-
dictive way. When we go on a trip and consult charts of average
July temperatures in California, we are using this type of probahil-
ity in an informal way.

3. Subjective probability is more ahout hunches and guessworl. “The
Braves have a 10% chance of winning the World Series this year,”
“Middlesbrough has a 1% chance of winning the FA Cup this
season,” or whatever,

There are, however, no hard-and-fast rules for distinguishing these dif-
ferent “flavora” of probability,

In the real world, especially in social science, data are once-off and obser-
vational, with no opportunity to conduct repeated trials. In treating sample
observations as typical of an entire population, we make some important
assumptions about the nature of the world and of our observations, in "
particular that the world is stable between observations and that our obhser-
vations are a representative (random) sample. There are many cases where
this cannot be true. The assumptions are especially dubious where data are
collected for a localized area, because then the sample is only representative
locally, and we must be careful about claims we make based on statistical
analysis.

A.4. PROCESSES AND RANDOM VARIABLES

Probability theory forms a basis for calculation of the likely outcomes of
processes. A process may be summarized by a random variable. Note that
this does not imply that a process is random, just that its outcomes may be
modeled as if it were. A random variable is defined by a set of possible
outcomes lay,....a;,....q,] and an associated set of probabilities
{Play), ..., Plag, ..., Pia,)l. The random wvariable is usually denoted by a
capital letter, say A, and particular outcomes by lowercase letters a;, We
then write P(A = a;) = 0.25 to denote the probability that the outcome of A
15 a;.
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When A can assume one of a countable number of outcomes, the random
variable is discrete. An example is the number of times we throw a six in
10 rolls of a die: the only possibilities are none, one time, two times, three
times, and so on, up to 10 times. This is 11 possible outcomes in total.
Where A can assume any value over some range, the random variable is
continuous. A set of measurements of the height of students in a class can
be regarded as a continuous random variable, since potentially any spe-
cific height in a range from, say, 1.2 to 2.4 m might be recorded. Thus, one
student might be 1.723 m tall, while another could be 1.7231 m tall, and
there are an infinite number of exact measurements that could be made.
Many observational data sets are approximated well by a small number of
mathematically defined random variables, or probability distributions,
which are frequently used as a result. Some of these are discussed in
the sections that follow.

The Binomial Distribution

The hinomial distribution is a discrete random variable that applies when a
series of trials are conducted where the probability of some event occurring
in each individual trial is known, and the overall probability of some num-
ber of oceurrences of the event is of interest. A typical example is the prob-
ability distribution associated with throwing x “sixes” when throwing a die
n times. Here the set of possible outcomes is

A = |0 sixes, 1 six, 2 sixes, ..., n sixes] (A.29)

and the binomial probability distribution will tell us what the probability is
of getting a specified number of sixes.
The binomial probability distribution is given by

PX = x) = (z)p‘tl _pr (A.30)

where p is the probability of the outcome of interest in each trial, there are n
trials, and the outcome of interest occurs x times. ¥ may take any value
between 0 and r. For example, for the probability of getting two sixes in five
rolls of a die, we have n =5, x = 2, and p = §, so that
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B 1 2 15—2
Pitwo smes}=( 2)(5) (1 6)
5! NN
(&) (0
_ Exdxﬂxz_xl_ (1 1 5 b E)
‘((ﬁxly(axzxn)” Exﬁ)“(ﬁ”“ﬁ”ﬁ (A.31)
_(120 1 (125
- E)"(aﬁ)" ﬁ)
15,000

~ 93,312
=0.16075

Figure A.3 shows the probabilities of the different numbers of sixes for five
rolls of a die. You can see that it is more likely that we will roll no sixes or
only one six than that we will roll two.

For statistical purposes it is useful to know the mean, variance, and

standard deviation of a random wvariable. For a binomial random variable
these are given by

= np
o =np(1 - p) (A.32)
o= 'np(l - p)

Binomial distribution

n =5, p=0.166667
05 o

04 4—

k3

Probability

0.2

0,1 4 ﬂ
o : } Il_'ll } ]

T L — |

0 1 2 3 4 5
Mumber of sixes

Figure A.3  Histogram showing the probabilities of rolling different numbers of sixes
for five rolls of a die.
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Applying these results we find that the mean or expected value when
throwing a die 5 times and counting ‘sixes’ is

p=np=>5x é = ().8333 (A.33)

with a standard deviation of

— [ 185 [ s
a=.np(l-p)= BxEx§=&_E=ﬂ.3333 (A.34)

Note that we would never actually observe 0.833 six, Rather, this is the
long-run average that we would expect if we conducted the experiment
many times,

The Poisson Distribution

The Poisson distribution is usefu) when we observe the number of ocour-
rences of an event in some fixed unit of area, length, or volume or over a
fixed time period. The Poisson distribution has only one parameter i, which
is the average intensity of events (i.e., the mean number of events expected
in each unit). This is usually estimated from the sample. The probability of
observing x events in one unit is given by

—h X
e "N
P(x) = = (A.35)
which has parameters
H=h
ot =1 (A.36)
o=/A

Figure A.4 shows the probabilities for a Poisson distribution with i = 2,
This distribution is important in the analysis of point patterns (see
Chapters 3 and 4).

Continuous Random Variables

Both the binomial and Poisson distributions are discrete variables, in which
the meaning of the probability assigned to any particular outcome is
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Poisson distribution
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Figure A4 Histogram of the Poisson distribution for 4 = 2.

obvious. In the continuous case it is less so. For example, the chance that
any student in a class will have a height of precisely 175.2 em is very small,
almost zero, in fact. We can only speak of a probability that a measurement
will lie in some range of values, Continuous random variables are therefore
defined in terms of a probability density function, which enables the caleu-
lation of the probability that a value between given limits will be observed,

The Uniform Distribution

In the uniform distribution, every outcome is equally likely over the range
of possible outcomes. If we knew that the shortest student in a class was
160em tall, and the tallest 200 cm, and we thought that heights were
uniformly distributed, we would have the continuous uniform distribution
shown in Figure A.5. As shown in the diagram, the probability that a stu-
dent’s height is between any particular pair of values a and b is given by the
area under the line between these values, Mathematically, this is expressed
as

a=h
Pa=x=h= j filx)dx (A.37)

e

where flx) is the probability density function. The units for the probability
density therefore depend on the measurement units for the variable, and
the area under the line must always total to 1 since something must occur
with certainty. This is the only time you will even see an integration (I}
symbol in this book. The calculus to determine the area under standard
continuous probability functions has already been done by others, and is
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Figure A5 Uniform distribution. The probability of a measurement between a and b
is given by the area of the shaded rectangle.

recorded in statistical tables. In the next sections, two of the most fre-
quently encountered and therefore most completely defined continuous ran-
dom wariables are described.

The Normal Distribution

It is unlikely that student heights are distributed uniformly, They are much
more likely to approximate to a normal distribution. This is illustrated in
Figure A.6. A particular normal distribution is defined by two parameters:
its mean u and its standard deviation o. The probability density function is
given by

1 k- p)
Nix, p, o) = - e.xp[ 50 (A.38)
0E
04 4
1
g 0.3 A
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=
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£
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Z-stora
Figure A.6  Mormal distribution.
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where x is a particular value that the variable might take. The standardized
form of this equation for a normal distribution with mean of 0 and standard
deviation of 1 is denoted N0, 1) and iz given by

N0, 1) —v,% e (A.39)

which shows how the probability of a normally distributed variable falling
in any particular range can be determined from its z-score alone. Tables of
the normal distribution ave widely available that make this caleulation
simple. This, together with the central limit theorem (see Section A.5), is
the reason for the importance of this distribution in statistical analysis. It is
useful to know that 68.3% of the arca under the normal curve lies within
one standard deviation, 95.5% within two standard deviations, and 99.7%
within three standard deviations of the distribution mean,

The Exponential Distribution

Many natural phenomena follow an approximately exponential distribu-
tion. A good example is the lengths of time between catastrophic events
(earthquakes, floods of given severity). The formulas for the exponential
distribution are

—x/
fi) =5
©=0 (A.40)
og=4

where # is a constant parameter that defines the distribution. The prob-
ability that a value higher than any particular value will be observed is
conveniently caleulated for the exponential distribution, according to

Pix = a) = ™" (A.41)

A.5. SAMPLING DISTRIBUTIONS AND
HYPOTHESIS TESTING

We now come to one of the key ideas in statistics. A set of observations is
often a sample of the population from which it is drawn. A voter survey is a
good example. Often, a sample is the only feasible way to gather data. It
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would not be practical to ask all the voters in the United States which way
they intended to vote, on a daily basis, in the runup to a presidential elec-
tion. Instead, polling organizations ask a sample of the population which
way they intend to vote. They then determine statistics (mean, variance,
ete.) from their sample in order to estimate the values of these parameters
for the entire population.

If we imagine taking many different samples from a population and
calculating (say) a in order to estimate the population mean p, we get a
different estimate of the population parameter from each different sample.
If we record the parameter estimate (i =& from many samples, we get
numerous estimates of the population mean. These estimates constitute a
sampling distribution of the parameter in question, in this case
the sampling distribution of the mean.

The Central Limit Theorem

The cenfral limit theorem is a key result in statistics and allows us to say
how pgood an estimate for a population parameter we can make given a
sample of a particular size, According to the central himit theorem, given
a random sample of n observations from a population with mean p and
standard deviation &, then for sufficiently large n, the sampling distribution
of a is normal with

s = ph {A.42)
and
[
= — Ad
%= (A43)

A number of points are significant here:

s The distribution of the population does not matter for large enough n.
For almost any population distribution, n = 30 is sufficient to ensure
that the sampling distribution is close to normal with the mean and
standard deviation above.

o The sample must be random, so that every sample of size n has an
equal chance of being selected.

e Since o; = o//n, our estimate of the population mean is likely to be
closer to the actual population parameter with a larger sample size,
However, because the relationship goes with ./n, it may be necessary
to increase our sample size considerably to get much improvement in
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the parameter estimate, since we must take a sample of 4n observa-
tions to halve the sampling distribution standard deviation,

o The central limit theorem applies to a good approximation to other
measures of central tendency (such as the median). It does not neces-
sarily apply to other statistics, go you may have to checlk statistics
texts for other cases.

For the data below (a sample of n = 30 incomes), we get an estimate of the
population mean income of i = = 25,057,

16511 14750 21703 16496 32311 25186
32379 17822 17992 22862 39907 39043
15324 19889 132632 24706 38480 25227
d4878 17898 16867 18644 20630 16132
36463 28714 18346 28398 25613 35908

We can estimate the population income standard deviation using the stan-
dard deviation of the sample (with n — 1 as denominator, remember) as
7 =83 = B147.981, From the central limit theorem, we then know that the
sampling distribution of the mean has a standard deviation given hy

o 8147981
o5 = G 14B7.611 (A.44)
Using this information, we know that if we were to take repeated samples of
income data for this population, about 95% of our estimates of the mean
income would fall within about two standard deviations of the estimate. In
fact, we can say that the mean income of the population is 26,057 + 1.96 x
1487.6 = 25,0567 £+ 2916 with 95% confidence. In other words, we are 95%
confident that the mean income of the population we have taken this
sample from is between 22,141 and 27.973.

Hypothesis Testing

The result above is the basis of a good deal of statistics. Given SOme gues-
tion concerning a population, we formulate a null hypothesis that we wish
to test. We then collect a sample from the population and estimate from the
sample the population parameters required. The central limit theorem then
allows us to place confidence intervals on our estimates of the population
parameters. If our parameter estimates are not in agreement with the null
hypothesis, we state that the evidence does not support the hypothesis at
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the level of significance we have chosen. If the parameter estimates do agres
with the null hypothesis, we say that the evidence is insufficient to reject
the null hypothesis.

For example, in the income example above, we might have hypothesized
that the mean income of the population is over 30,000. The evidence from
our sample does not support this hypothesis, since we are 95% confident
that the population mean lies between 22,141 and 27,973. In fact, given the
sampling distribution of the mean, we can say how likely it is that the
population mean is over 30,000; 30,000 has a 2 score of (30,000 — 25,067)/
1487.6 — 3.323 relative to the sample mean. The probability of a z score of
3.323 or greater may be determined from tables of the norm al distribution
and is extremely low, at just 0.045%, or roughly 1 chance in 2000. We can
say that the null hypothesis is rejected at the p = 0.00045 level. It is impor-
tant to note that what we are really saying is that if we repeatedly take
samples of n = 30 incomes from this population, only one in 2000 of the
samples would give us an estimate of mean income greater than 30000.
From this we deduce that it is extremely unlikely that the population
mean really iz 30000 or greater,

Note what would happen if our original sample were larger, with (say)
120 observations. If the sample mean and standard deviation were the
same, a fourfold increase in sample size halves the standard deviation of
the sampling distribution of the population mean, allowing us to halve the
width of our 95% confidence interval on the population mean, This makes
our estimate of the population mean more precise.

The procedure outlined here is the basis of most statistics. We have a
question that we want to answer using whatever appropriate data we can
ohtain, Generally, it iz impractical to collect complete data on the entire
population, so we set up a hypothesis and gather a sample data set. The key
statistical step is to determine the probabilities associated with the
observed descriptive statistics derived from the sample. This is where the
various probability distributions we have discussed come in, because many
sampling distributions conform to one of the standard distributions dis-
cussed in Section A.4. In other cases it may be necessary to perform com-
puter simulations to produce an empirical estimate of the sampling
distribution. This is common in spatial analysis, where the mathematical
analysis of sampling distributions is often very difficult, if not impossible.
Having determined a sampling distribution for the descriptive statistics we
are interested in, we can determine how likely the actual observed sample
statistics are, given our hypothesis about the population. If the ohserved
statistic is unlikely (usually, meaning less than 5% probability), we reject
the hypothesis. Otherwise, we conclude that we cannot reject the hypoth-
esis,
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A.6. EXAMPLE

The ideas of data summary, postulating a null hypothesis, computation of a
test statistic, location of this on an assumed sampling distribution assum-
ing the null hypothesis to be true, and then making a decision as to how
unusual the observed data are relative to this null hypothesis are best
appreciated using a simple worked example. The chi-square (x*) test for
association between two categorical variables illustrates the concepts well
and can be developed from basic axioms of probability. It puts the null
hypothesis up front and also leads easily to the distribution of the test
statistic. This test is used in some approaches to point pattern analysis
and hot-spot detection (see Chapters 4 and 5). Almost all other standard
tests follow a similar approach, and details can be found in any statistical
text. Chi-square just happens to be easy to follow and useful in many prac-
tical situations.

Step 1: Organize the Sample Data and
Visualization

Suppose that as a result of a sample survey, you have a list of 110 cases,
each having two nominal attributes describing it. A simple example might
be the results of a point sampling spatial survey where at each point we
recorded the geology and the maximum valley side angle of slope. The
attribute “geology” is recorded simply as “soft rock” and “hard rock,” and
the slope angle, although originally measured in the field using a surveying
level to the nearest whole degree, is coded as gentle (angles from flat to 5%,
moderate (5° to 10”), and steep (>10°). Hence, a typical observation consists
of codes for each of these attributes; for example, observation 1 had attri-
butes H and M, indicating that it was hard rock with a moderate slope. The
complete survey records the combined geology and slope for 110 sample
locations, each determined by the spatial equivalent of simple random sam-
pling. Our interest is to determine if slope varies with geology. The obvious
research idea we might have is that harder rock is associated with the
steeper slope angles, and vice versa. All 110 observations can be organized
and visualized by forming a contingency table, in which rows represent one
of the attributes (slope) and columns the other (geology). Each cell entry in
the table is the count of cases in the sample that have that particular
combination of unique conditions:
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Observed Frequencies

Geology
Slope Soft rock  Hard rock  Totals
Gentle 21 9 30
Moderate 18 11 29
Steep 15 33 5l
Totals BT Ba 110

MNote that these entries are whole-number counts, not percentages,
although most statistical analysis packages allow these to be caleulated.
There are, for example, just 21 easzes in the data where the attributes are
“gentle slope” and “soft rock,” 9 cases of “gentle slope” and “hard rock,” and
so on. Of particular importance are the row and column totals, called the
marginal totals. There were, for example, 30 cases of gentle slopes in the
sample irrespective of geology and 57 sites on soft rock. By inspecting this
table, we can see that there is a tendency for steeper slopes to be on hard
rock, and vice versa. It is this idea that we test using the chi-square test of
association for two qualitative variables,

Step 2: Devise a Test Statistic or Model

The key to the procedure adopted lies in the idea of testing not this rather
vague hypothesis, which after all, does not say how the two variables are
associated, but a more specific null hypothesis which says that the two
variables are not associated. The idea is that we propose a null hypothesis
and hope that we will disprove it. If it is disproved, the alternative research
hypothesis (that the categories are associated) can be regarded as proven. It
is conventional to use Hy (“H nought”) to refer to the null hypothesis and H;
(*H one”) for the alternative.

The chi-square statistic computes a measure of the difference between the
cell frequencies in the observed contingency table and those that would be
expected as long-run averages if the null hypothesis Hy, were true, It is here
that basic probability theory comes into play. Consider the first cell of our
table showing the number of cases where there was a gentle slope on soft
rock. If our null hypothesis were true; what would we expect this number to
be? We know from the laws of probability (see Section A.3) that if the two
categories are independent, the probabilities involved should be multiplied
together, In this case we need to know the probability of a case being on soft
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rock and the probability of it being a gentle slope. In fact, we know neither,
but we can estimate the probabilities using the marginal totals. First, we
estimate the probability of a sample being on soft rock as the total observed
(irrespective of slope) on soft rock, divided by the grand total as

P(soft rock) = 57/110 = 0.518 {A.45)
Similar logic leads to the probability of a sample having a gentle slope:
P(gentle slope) = 30/110 = 0.273 (A48)

So if the two are really independent, as Hy suggests, their joint probability
is

Pisoft rock N gentle slope) = P(soft rock) = P( gentle slope)
=0.518 = 0.272 (A.47)
=0.1414

We can repeat this operation for all the remaining cells in the table. Given
the total number of observed cases, this gives us a table of expected counts

in each table cell, as follows:

Expected Frequencies

Geology
Slope Soft rock Hard roch Totals
Gentle 15.55 14.45 30
Moderate 15.03 13.97 20
Steep 26,43 24.67 51
Totals a7 b 110

Because the expected values are long-run expected averages, not actual
frequencies, they do not have to be whole pumbers that could actually be
observed in practice. Notice that ealculation of the expected frequencies is
easy to remember from the rule that the entry in a particular position is the
product of the corresponding row and column totals divided by the total
number of cases,

Now we have two tables, one the observed frequencies in our sample, the
other the frequencies we would expect if the null hypothesis were true. The
first we call the table of observed frequencies, the second the table of
expected frequencies, Intuitively, if these tables are not much different,
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we will be unable to reject the null hypothesis, whereas large diserepancies
will lead us to reject the null hypothesis in favor of H;, concluding that the
variables are associated. What the formal statistical test does is to quantify
these intuitions, An obvious thing to do if we are interested in the difference
between two sets of numbers is to take their differences. This will give us
some negative and some positive values, so we actually take the squared
differences between the observed and expected frequencies (O — Eg)z, to
get:

Squared Differences

Geology
Slope Soft rock Hard rock
Gentle 29,7205 29,7206
Moderate 85,8209 82.8209
Steep T1.0648 710649

These numbers sum to 219,18, but a moment's thought reveals that the this
total depends as much on the number of cases in the sample as it does on
the cell differences, so that the larger n is, the greater will be this measure
of the difference between the observed and expected outcomes. The final
step in constructing the chi-square test statistic is to divide each squared
difference by its expected frequency, giving (O — Ey*/Ey, to standardize
the calculation for any n.

(O — E;*/Ey

Gealogy
Slape Soft rock Hard rock
Gentle 1.910 2,058
Moderate 0.587 0.675

Steep 2,689 2,892

The sum of these cell values, 10,809, is our final chi-square statistic. Given
a set of individual cell observed frequencies Oj; and expected frequencies E,;,
the statistic i3 defined formally by the equation
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2

=33 {{}”—f i) (A.48)
i J i

You should be able to see that this is an obvious and logical way of deriving
a single number (a statistic) to measure the differences between two sets of
frequencies, There is nothing mysterious about it.

Step 3: Study the Sampling Distribution of Qur
Test Statistic

Intuition tells us that big values of chi-square will indicate large discrepan-
cies between observed and expected, and small numbers the reverse, but in
terms of whether or not we reject the null hypothesis, how big is “big"? Now
we come to the sampling distribution of chi-square. Note first that this
cannot be a normal distribution because it must have a lower limit of
zero, since no negative numbers are possible, and if the two sets of frequen-
cies are the same, we sum a series of zeros. If we assume that the distribu-
tion of differences between a typical ohserved frequency and the expected
value for the same cell is normal and then square these values, provided
that we standardize for the numbers involved by dividing by the expected
frequency, we can develop a standard chi-square distribution for a single
cell. In fact, this is exactly the basis for tabulated values of the chi-squared
statistic. Since the chi-square statistic is caleulated by summing over a set
of cells, it is parameterized by a related whole-number (integer) value called
its degrees of freedom. For a contingency table, this is caleulated from

Degrees of freedom = df = (no. rows — 1) x (no. columns — 1) (A49)

As the table below shows, there is a different distribution of chi-square for
each different value of this parameter. In this table, each value is the chi-
square that must be exceeded at the given probability in order for any null
hypothesis to be rejected. The listed value of ¥* would oceur with the listed
probability, it Hy were true.
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Probability

df o =0.05 o = 0.01 a = 0,001

1 3.54 6.64 10.83
2 6,09 9.21 13.82
3 7.82 11.34 16.27
4 9.49 13.28 18,46
& 11.07 15.00 20.52
6 12.59 16.81 22.46
7 14.07 18.48 24.32
10 18.31 23.21 29.59
20 3141 a47.57 45.32
30 43.77 50.89 69.70

Step 4: Locate the Observed Value of the Test
Statistic in the Assumed Sampling Distribution
and Draw Conclusions

So what can we conclude about the association between the hardness of the
rock and the slope angles? Recall that our data formed a 3 x 2 contingency
table and generated a chi-square test statistic of 10,808, The table has
(3 —1) % (2 — 1) = 2 degrees of freedom. We now relate these numbers to the
standard chi-square distribution, With df = 2, the critical value at o = 0.05 is
5.99. This means that if there were no association between the attributes
(i.e., if the null hypothesis were true) this value would be exceeded only five
times in every hundred, Our value is higher than this. In fact, it is also
higher than the @ = 0.01 critical value of 9.21, This tells ua that if the null
hypothesis were true, the chance of getting a chi-square value this high iz
low, at less than 1 in 100. Our choice is either to say, despite this, that we
still think that Hj is true, or more sensibly, to say that we must reject the
null hypothesis in favor of the alternative (H;). We have pretty good evi-
dence that roek hardness and slope angle are associated in some way.

This may seem a rather formal and tedious way of proving something
that is obvious right at the outset. Indeed, it is. However, the hypothesis
test acts as a check on our speculations, providing a factual bedrock on
which to build further, perhaps more scientifically interesting ideas (such
as “why do we get steeper slopes on harder rocks?").
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