Unit 4: Mountain Building, Obduction, and Tsunamis

Welcome to Unit 4

Introducing Mountain Building, Obduction & Tsunamis

Introducing Obduction

Great Smoky Mountain National Park. Farm land in the front & 3 mountain ridges behind.
The folded Appalachian Mountains of southern Pennsylvania and adjacent Maryland. A collision between the “Old World” (Europe and Africa) and North America squeezed the rocks in a process called obduction, making folds in the rocks that are something like rumples in a carpet, and pushing the rocks up to form the Appalachians.
Credit: R.B. Alley
"No matter how sophisticated you may be, a large granite mountain cannot be denied—it speaks in silence to the very core of your being."
—Ansel Adams, The Spirit of the Mountains

Old, cold sea floor goes down subduction zones beneath warmer sea floor or continent, but what happens when a high-floating continent or island arc tries to go down a trench under another continent or island arc?

The answer is obduction, a BIG collision. The Great Smokies, Mt. Nittany near Penn State's University Park campus, and all of the Appalachians were formed by just such a collision when Africa and Europe hit the Americas, causing a long, thin slab of crust to become a short, thick one by folding and thrust-faulting. Higher mountains have deeper roots (for the same reason that toy boats can float in less water than aircraft carriers, and the iceberg that sank the Titanic stuck farther down in the water than did the ice cubes in the drinks on deck). When erosion lowers a mountain range, the root floats up, bringing metamorphic rocks to the surface that have been "cooked" by heat and pressure deep within the Earth.

Before we go any further, take a look at the following short video introduction by Dr. Anandakrishnan...

Duck Mountains Under Construction
Click Here for Transcript of Duck Mountain Video

[RUNNING WATER]

Oh, hi. Welcome to the GEOSC 10 Tectonics III Section, Mountain Building. We're going to be talking about how the Appalachians were built, why they're still as high as they are now. And we're gonna talk a little bit about icebergs. Now, what does all that have to do with rubber duckies, and why am I in the bathtub surrounded by rubber duckies? Well, let's find out.

So why are we in a tub with rubber duckies? Imagine that these ducks represent the mountains that surround us right here in Happy Valley. This is Mount Nittany. Here's the Great Smoky Mountains. And these are all the ridges and valleys that spread up and down the east coast of North America, known as the Appalachian Mountains.

About 300 million years ago, North America and what's now Europe and Africa all collided to form a super-continent known as Pangaea. And when these continents collided, because they're both about the same density, neither one subducted beneath the other. In fact, as they crashed together, they formed larger and larger mountains that wrinkled up. And that's what we had 300 million years ago with the Appalachians. This big duck represents the mountains at the end of that mountain building phase.

So after that collision, we have the proto-Appalachians. They were big. They were tall. They were high.

But for the last 300 million years, they've been eroded, and eroded, and eroded. But still, we have mountains around here that are a couple thousand feet high. If you go further down towards Tennessee and Kentucky, there are mountains that are 4,000 or 5,000 feet high. Why are they still high? Well, it has to do with buoyancy.

[RUNNING WATER]

Credit: Dr. Anandakrishnan

And....a Word About Tsunamis

Pull-apart, slide-past, push-together obduction and push-together subduction plate boundaries plus hot-spots make earthquakes, volcanoes, and steep slopes that can landslide. If any of these happen underwater, great waves called tsunamis can be generated, with catastrophic consequences. Fortunately, warning systems can be devised to reduce the loss of life, and building with a little foresight can reduce property damage. We'll be looking into these as we wrap up our multi-week exploration of Plate Tectonics and Mountain Building.

Learning Objectives

  • Differentiate between the three basic tectonic styles: pull-apart, push-together, and slide past
  • Identify which plate tectonics created various mountain ridges
  • Understand how various types of obduction zones work to create geologic formations
  • Visually identify various types of rocks

What to do for Unit 4?

You will have one week to complete Unit 4. See the course calendar for specific due dates.

As you work your way through the online materials for Unit 4, you will encounter a video lecture, several vTrips, some animated diagrams (called GeoMations and GeoClips), additional reading assignments, a practice quiz, a "RockOn" quiz, and a "StudentsSpeak" Survey. The chart below provides an overview of the requirements for this unit.

Overview of Unit 4 Requirements
REQUIREMENTS SUBMITTED FOR GRADING?
Read/view all of the Instructional Materials for Unit 4: No, but you will be tested on the material found in the textbook.
Take the Unit 4 "RockOn" quiz Yes, this is the fourth of 12 end-of-unit RockOn quizzes and is worth 4.5% of your total grade.
Continue working on Exercise #2: Geology is All Around You Yes, this is the second of 6 Exercises and is worth 5% of your total grade.
Complete the "StudentsSpeak #5" survey Yes, this is the fifth of 12 weekly surveys and is worth 1% of your total grade.

Questions?

If you have any questions, please feel free to email "All Teachers" and "All Teaching Assistants" through Canvas conversations.

Keep Reading!

On the following pages, you will find all of the information you need to successfully complete Unit 4, including the online textbook, a video lecture, several vTrips and animations, and two overview presentations.

Penn State logo

Students who register for this Penn State course gain access to assignment and instructor feedback, and earn academic credit. Information about registering for this course is available from the Office of the University Registrar.

Main Topics, Unit 4

Overview of the main topics you will encounter in Unit 4.

Plate Tectonics III: Obduction

  • In subduction, denser side sinks under less-dense side.
  • But continents and island arcs are too low-density to go down—”You can’t sink a continent.”
  • When they run into each other, OBDUCTION results, with folding, push-together (thrust) faulting, and thickening.
  • This makes the biggest mountain ranges—Appalachians (still high after 200 million years), Himalaya, etc.
  • Can even push older rocks on top of younger ones.

A Little History

  • Appalachians formed as proto-Atlantic closed.
  • Had subduction-zone volcanoes with big eruptions, island arcs colliding with continent, etc.
  • This ended when Africa and Europe hit the Americas and pushed up the Appalachians (Great Smokies, State College, PA).
  • When the push-together ended, the great, hot pile of the Appalachians spread under its own weight, with Death-Valley-type faulting.
  • Thinning with spreading reduced pressure on mantle, inducing rising and melting (convection), opening Atlantic.

The Three Basic Tectonic Styles

  • PUSH-TOGETHER: subduction (Olympic, Crater Lake, Mt. St. Helens) or obduction (Great Smokies).
  • PULL-APART: rifting/spreading/sea-floor-production (Death Valley).
  • SLIDE-PAST: faulting (San Andreas).
  • Can have intermediates (push-together while sliding past, or pull-apart while sliding past).
  • The three types of plate boundaries, plus hot-spot activity poking up through plates, give the great majority of mountain-building, earthquakes, volcanoes, etc.

Meanwhile, Out West:

  • As the Atlantic opens, Asia and Americas approach each other, narrowing the Pacific.
  • Subduction under western US started with cold rock, but as the continent moved toward the Pacific spreading ridge, more-buoyant ("float-ier") rock was forced down, scraped along under US rather than sinking deep, and rumpled up the lithosphere to make Rockies, etc., far inland.
  • Where subduction zone reached and swallowed the ridge, rock is no longer going down under the west; the subduction zone was push-together plus slide-past, and the slide-past remains as the San Andreas Fault.
  • Where and when the push-together of the subduction ended, the pile of the western US spread under its own weight, giving Death Valley faulting.
  • (Things really a tad more complex than this, and some things out west aren’t explained—work for you?!—but this isn’t too far off.)

Old mountains & metamorphism

  • Upper layers float on lower layers.
  • When collision of obduction thickens the upper, crustal rocks, the mountains sticking up into the air float on a root sticking down into the mantle (like an iceberg, but bergs have about 1/10 up and 9/10 down, mountains closer to 1/7 up and 6/7 down).
  • Cut off the top of an iceberg and the bottom bobs up; erode off the top of mountains and the bottom bobs up.
  • Bobbing-up of eroding mountains brings rocks to the surface that had been squeezed deep and hot.
  • Heating and squeezing turns sedimentary rocks (pieces of older rocks) or igneous rocks (frozen from melted rock) into metamorphic rocks, often pretty with ores or gems.

Tsunamis

  • Undersea earthquakes, volcanoes, or landslides, or meteorite impacts, can move lots of water.
  • Such water motion makes a wave (a tsunami) that is long and low in the ocean, but the wave front slows down as it enters shallow water, and the back catches up and piles up.
  • Most tsunamis tiny, but can run up on land to elevations above 1000 feet; 2004 Indian Ocean tsunami killed over 300,000 people, and the tsunami from the Tohoku, Japan earthquake in 2011 did much of the damage in what was probably the most expensive natural disaster ever.
  • Can’t stop tsunamis, but can give real-time warnings (earthquakes, etc., make seismic waves that go faster than the tsunamis; “listen” for them with seismometers, then warn people to go inland fast).
  • Can enforce zoning codes to build in safe places, and keep reefs and barrier islands healthy to break some of tsunami energy.

Textbook 4.1: Still More Plate Tectonics, The Great Smoky Mountains

The Smokies—and State College?

sunset over the Appalachian Mountains with a tree in the foreground.
Scenic view of the folded Appalachian mountains in Great Smoky Mountain National Park, North Carolina and Tennessee.
Credit: R.B. Alley

The Great Smoky Mountain National Park of North Carolina and Tennessee includes 16 mountains over 6,000 feet (about 2,000 m) high, making this generally the highest region in North America east of the Mississippi River. Gatlinburg is a mile (1.6 km) lower than Mt. Le Conte, a relief not much smaller than in many of the great mountain parks of the west, where the peaks are higher but so are the valleys. The Smokies were preserved in a park in 1926, with much of the funding for land purchases provided by J.D. Rockefeller. The Great Smokies, today, are the most-visited national park, because they combine spectacular scenery, rich biological and historical diversity, proximity to major population centers, the lure of a quick stop-off on the drive from the northeast to Florida, and a shortage of other nearby national parks to draw off the crowds. (Although we should not forget Shenandoah, connected to the Smokies by the Blue Ridge Parkway, a beautiful park in its own right.)

Map of U.S. with Great Smoky Mountains National Park highlighted mid-way along the North Carolina/Tennessee border.
Great Smoky Mountains Location
Credit: R.B. Alley

In case you’re interested, the top-ten most visited national parks in 2012 included great Smoky Mountains with 9.7 million, Grand Canyon with 4.4 million, Yosemite with 3.9 million, Yellowstone with 3.4 million, Rocky Mountain with 3.2 million, Zion with 3.0 million, Olympic with 2.8 million, Grand Teton with 2.7 million, Acadia with 2.4 million, Cuyahoga Valley with 2.3 million. Cuyahoga Valley may seem the odd-one out; it is a recent addition, seems to have been justified as a national park in part so that Ohio would have a national park, and seems to have a lot of day-picnickers from nearby Cleveland who increase the attendance a whole lot, based on Dr. Alley’s observations during a recent visit. But, Dr. Alley also believes that the Park Service is doing great things with it, and it is well worth the visit! Over 282 million people visited US national parks in 2012 (bear in mind that is with ~2 million fewer visitors than expected as a result of park closure caused by Hurricane Sandy). Note that this is nearly 90% of the whole US population. Although some people will have visited a few parks whilst others visited none, overall people are enjoying their parks!

Much interest in the Smokies centers on the historical aspects. For example, how did the early European settlers survive and flourish in this region? At Cades Cove, wonderful relicts of a bygone lifestyle are maintained in a living museum. Many visitors are also seeking to learn about the earlier Native Americans. Biologically, the Smokies host an amazing array of tree species, flowering bushes (azaleas, rhododendron, and mountain laurel in particular), wildflowers including many orchids, and more. Approximately one-third of the park is covered with "virgin" timber that was not cut by European settlers, and the regions that were logged are growing back rapidly.

Abundant rainfall and snowfall “scraped” from the sky by the high peaks feed numerous cascades and waterfalls, with trout in the pools and kingfishers by their banks. Rainfall is roughly 50 inches (1.3 m) per year in the valleys, and more than 85 inches (2 m) per year on the peaks, so the Smokies share some characteristics with temperate rainforests of the west such as in Olympic. Especially during “off-peak” times, you can get lost in the Smokies, and imagine what the Appalachians must have looked like without humans; approximately 3/4 of the park is wilderness.

Obduction Zones – The Push-Together Boundaries

The Smokies are a small part of the great Appalachian mountain chain, which extends along the coast of North America from Newfoundland through the Smokies, and then bends westward into Oklahoma. In the Great Smokies, the mountains display a truly remarkable feature—older rocks sit on top of younger rocks! (See the diagram below.) The very high peaks are composed of hard, resistant, old metamorphic rocks (which we will explain soon), of the sort that one finds deep in a mountain range. Beneath them are younger, sedimentary rocks that were deposited in shallow seaways. Between these is a surface called a thrust fault or push-together fault. Thrust faults often show evidence of sliding—scratches and polish indicating motion in one direction, crushing or breaking of rocks, etc. In some cases elsewhere in the world where deformation is still active, thrust faulting has been observed during earthquakes. In the Smokies, the older rocks have been shoved as much as 70 miles (110 km) to reach their present position on top of the younger rocks. The picture below the diagram shows two very much smaller thrust faults, with the upper rocks shoved up to the right only a few inches, but the idea is the same.

Explained thoroughly in caption and text.
Diagram showing how push-together forces moved older rocks above younger ones along a thrust fault in Great Smoky Mountains National Park; Cade’s Cove, a famous location in the park, is a valley eroded through the older rocks and the thrust fault into the younger rocks beneath.
Credit: R.B. Alley

You may recall that we started with pull-apart faults at Death Valley. As shown in the diagram above, thrust faults are of the push-together type. Squeeze from either side, and one set of rocks will be pushed over another set. Each set is right-side up, but where they meet, the older rocks are on top of younger. This is seen clearly in the Great Smokies.

Farther north, in the State College, Pennsylvania area, where Drs. Alley and Anandakrishnan teach and where Dr. Alley wrote most of this text, we see a different way that rocks can respond to push-together stresses. There, in addition to some push-together thrust faults, many folds occur. Take a piece of paper, lay it on your desk, and squeeze the opposite sides towards the center. The paper will buckle into a fold. You may achieve the same effect by trying to push a carpet along the floor. Clearly, there are push-together forces involved here.

Small thrust faults, with one bed of sandstone thrust a few inches over another in a cliff below the Glen Canyon Dam in Arizona.
This picture shows two very much smaller thrust faults, with the upper rocks shoved up to the right only a few inches, but the idea is the same.
Credit: R.B. Alley

Just as pull-apart forces occur at spreading ridges, we should expect push-together forces at subduction zones, or at other collision zones. Today, the Appalachians and the east coast of South America look across the quiet sea floor of the Atlantic, across the spreading center of the mid-Atlantic ridge, to the coastlines of Africa and Europe. The coastlines on either side of the Atlantic are parallel to each other and to the mid-Atlantic ridge—slide the new and old worlds back together again, and they fit like a jigsaw puzzle. You can put all of the modern continents back together jigsaw-puzzle style. This fact, and especially the wonderful fit across the Atlantic, has figured prominently in suggesting the idea of drifting continents to scientists and other observers almost since the first decent maps were available of the Atlantic coasts. More importantly, putting the continent shapes back together jigsaw-puzzle style puts the “picture”—the geology—back together as well for events that happened while the continents were joined. For example, the tracks of a glacier run out to sea from Africa, and glacier tracks run from the sea into South America; put the continents back together, and the tracks fit together in showing the path of a single ice flow.

The oldest rocks on the Atlantic sea floor are about 150 million years old, approximately the same age as sediments that were deposited in a Death-Valley-type setting in the Newark Basin of New Jersey and elsewhere along the U.S. east coast. Evidently, the modern situation of a spreading Atlantic began about then, splitting apart a supercontinent to form the Atlantic Ocean in the same way that Baja California is being split off to open the Gulf of California.

See caption.
Photo of a road cut along State Route 322 just east of Penn State’s University Park campus. As the proto-Atlantic ocean closed, subduction-zone volcanoes formed. Ash from these volcanoes can be found in the rocks exposed in the road cut.
Credit: R.B. Alley

But, the Appalachian Mountains are much older than that. A story begins to emerge of a cycle—older push-together forces led to closing of a proto-Atlantic ocean that produced the Appalachians. When the proto-Atlantic was closing, subduction-zone volcanoes formed and spread ash layers across the land, much as Crater Lake/Mt. Mazama and Mt. St. Helens did more recently. (You can find some of those ash layers in many places, including the road cut along the Route 322 expressway just south of East College Avenue in the State College, PA area; see the picture at left.) Sometimes, the proto-Atlantic subduction zones formed offshore and then their volcanoes collided with the North American continent.

When the pushing stopped, the giant pile of the Appalachians, with deep, hot rocks beneath, began to fall apart in Death-Valley style, and red sandstones and mudstones accumulated in Death-Valley-style valleys along parts of the U.S. east coast. The drop in pressure as the Appalachians fell apart probably caused a convection cell in the deep mantle to rise right there, eventually forming the Atlantic Ocean.

Such a cycle, with subduction or continental collisions building mountain ranges that then spread Death-Valley style and eventually split to make ocean basins, has been played out many times over the history of the Earth. And, the fun isn’t over yet; North and South America are cruising westward toward Australia and Asia, as the Atlantic widens and the Pacific narrows. Africa is still bumping into Europe and pushing up the Alps, and India has not yet grown weary of ramming Asia to raise the Himalaya. At fingernail-growth speed, the next 100 million years or so should lead to a lot of geological high drama, but the next 100 years won’t see a whole lot of change. A good animation of this cycle can be found on YouTube.

The key to most of this is that you can sink old, cold sea floor, but you can’t sink a continent. Island arcs and continents float on the mantle too well. So, rather than going down the subduction zone with the oceanic lithosphere, the island arc or continent rides across the subduction zone for a major collision. In such a collision, called obduction, layers of rock are bent into folds such as those of the State College area, or broken into thrust faults such as those under the Blue Ridge and the Great Smokies. In the case of the Appalachians, the thrust faulting was very efficient, with older rocks sliding tens or hundreds of miles (or kilometers) over younger ones.

The Three Structural Styles

You have now seen, at least briefly, the three structural styles that are possible: pull-apart (Death Valley, spreading ridges); push-together (Crater Lake and Mt. St. Helens subduction, State College and the Great Smokies obduction); and slide-past (the San Andreas Fault in California). Pull-apart behavior involves stretching of rocks until they break, forming pull-apart or gravity faults (after being pulled apart, gravity pulls one block down past the other). Pull-apart action occurs at the spreading centers, probably where the convection cells deeper in the mantle spread apart. Push-together behavior occurs at subduction and obduction zones, and produces squeeze-together folds and faults, with the faults also known as thrust faults. Slide-past boundaries, also called transform faults, occur where two large blocks of rock move past each other but not toward or away from each other. Slide-past motion produces earthquakes without mountain ranges

See caption. Diagram described in text.
A bend in a “slide-past” (transform) fault can create locally push-together or pull-apart conditions, and such behavior is observed in California along the San Andreas fault.
Credit: R.B. Alley

Now, you might imagine that we have oversimplified just a little. There is no law that rocks must move directly toward each other (push-together) or exactly parallel to each other (slide-past); sometimes you see an oblique motion with rocks approaching on a diagonal. Or, the rocks may pull apart on a diagonal. And a bend in a slide-past boundary may produce pull-apart or push-together features, depending on which way the bend goes relative to the motion, as shown in the diagram above. A large bend in the San Andreas Fault just north of Los Angeles gives push-together motion and some impressive mountain ranges.

Mountain ranges correspond directly to the main boundary types. Fault-block mountains—the Sierra Nevada, the Wasatch Range, the flanks of the great rift valleys of Africa, and the mid-oceanic spreading ridges—form at pull-apart margins. The mountains are high because the rocks beneath them, in the mantle, have expanded because they are the hot upwelling limbs of convection cells. Volcanic-arc mountain ranges form over subducting slabs, where some of the downgoing material melts and is erupted to form stratovolcanoes; smaller ranges (such as the Coast Ranges of the Pacific Northwest, including Olympic National Park) may form from the sediments scraped off the downgoing slab just above the trench. Continent-continent or continent/island-arc obduction collisions occur at convergent or push-together boundaries as well, producing folded and thrust-faulted mountain ranges.

Why the Great Smokies Are Still So High

Remember that crustal rocks are the low-density “scum” that floats on the denser mantle. When obduction occurs, this crustal scum is crunched—it goes from long and thin to short and thick, in the same way that the front end of a car is changed when it runs into a brick wall. Then, just like an iceberg floating in water, a mountain range is a thick block of crust floating in the mantle, with most of the thickness below and only a little bit sticking above.

With an iceberg, about 9/10 of the thickness is below the water and 1/10 above. If you could instantly cut off the 1/10 that is above water, the iceberg would pop up to almost as high as before. A 100-foot-high berg would have 10 feet above the water and 90 feet below. Cut off the top 10 feet, and it is a 90-foot berg with 9 feet, or 1/10, above the water and 81 feet below. So removing 10 feet from the top shortens the ice above water by 1 foot, and the ice below the water by 9 feet. With mountain ranges, the density contrast between crust and mantle is larger than that between ice and water—only about 6/7 of a mountain range projects down to form the root, and 1/7 projects up to form the range.

It remains, however, that if you erode a mountain range, some of the root is freed to float upward. Only by eroding the equivalent of 7 mountain ranges can you eliminate the mountain range entirely. So the Appalachians, despite having been deeply eroded, are still high because they still have a root.

The idea that things on the surface of the Earth float in soft, denser material below is called isostasy, which means “equal standing”—that each column of rocks on Earth has the same weight or standing. Lower-density columns then must be thicker to weigh as much as thinner, higher-density columns. The continents stand above the oceans because the silica-rich continental crust is lower in density than the silica-poor sea-floor crust. The mountain ranges stand above the plains because the thick, low-density roots of the mountains have displaced some of the high-density mantle that is found beneath the plains, or because the rocks beneath the mountains are especially hot and so low in density.

Put a big weight on a piece of crust (say, an ice sheet, or the Mississippi Delta, or a mountain range) and that piece of crust sinks, pushing up material around it in the same way that the surface of a water bed sinks beneath your posterior when you sit down, while the surface is pushed up around you by the water that is shoved sideways. The rising and sinking of the land are slower than for a water bed—thousands of years rather than seconds—because the hot, soft, deep mantle flows a lot slower than water does. But for a mountain range over 100 million years old, a few thousand years doesn’t mean much.

Notice something else fascinating; when a mountain range is being eroded, the top is taken off, and rocks below bob up. Those are taken off, with their place taken by more rocks from below. Pretty soon, the rocks at the surface have come from far down in the Earth, where temperatures and pressures are high. And as you might imagine, high temperatures and pressures change rocks. The rocks around State College, PA have not been “pressure-cooked” much, but the rocks around Philadelphia have been; they tell the story of a great mountain range that fell apart, leaving the remnant that we know as the Appalachians. The rocks in Rocky Mountain National Park are similar to those in Philadelphia, having been deep and now occurring at the surface. Let’s go take a quick look.

Textbook 4.2: Still More Plate Tectonics, The Rocky Mountains

Snow-covered mountains behind a lake.
Bierstadt Lake in Rocky Mountain National Park, Colorado.
Credit: R.B. Alley

Mountain Building and Metamorphism

Rising high above Estes Park, Colorado, and almost within shouting distance of the population centers of Boulder and Denver, Rocky Mountain National Park is a natural destination for the crowds that throng to this mountain playground. Long’s Peak, at 14,256 feet (about 4300 m), dominates the south-central part of the park; the peak was first climbed in 1868, by a party that included John Wesley Powell, the man who later commanded the first boat passage of the Grand Canyon and then led the United States Geological Survey. Numerous peaks over 13,000 feet (4000 meters) in Rocky Mountain lure climbers.

Small and rapidly shrinking active glaciers still carve the mountains, and much greater glaciers of the past left the numerous tarn lakes, moraines, and other features that decorate the park. Trail Ridge Road surmounts the high tundra of the park, giving the visitor a first-hand look at periglacial processes and ecosystems (those of cold regions; more on this later). The Colorado River rises on the west slopes of the park, and lovely little trout streams such as the St. Vrain flow down the east slope. Bighorn sheep and elk attract traffic jams in Horseshoe Park.

Map of U.S. with Rocky Mountain National Park highlighted in north-central Colorado.
Rocky Mountain National Park location
Credit: R.B. Alley

It is a tad embarrassing to say that we don’t fully understand the Rockies yet, including those of Rocky Mountain National Park. Oh, the long history of mountain building, erosion, glaciation, etc., is well-known—we can tell the story. But most mountain ranges hug coasts, or are trapped inland only by the destruction of the ocean to which they once were coastal, whereas the Front Range of the Rockies is as far as almost 1,000 miles (1600 km) from the coast, yet the Rockies are not the direct result of obduction.

The U.S. West is a complicated region (see the Enrichment section for a little more on this). The continent has been approaching and overriding the East Pacific Rise spreading ridge. The San Andreas Fault is the product of the rise running into the trench. Before these met, subduction had been occurring from push-together motion, but with a little slide-past motion thrown in. After the meeting, the subduction stopped, so the push-together stopped, but the slide-past remained to make the San Andreas. To the north of the San Andreas Fault, subduction is still active, forming the Cascades including Mt. Rainier and Mt. St. Helens.

Long ago, the west-coast subduction zone started in the usual way, with old, cold ocean floor going down into the deep mantle. But as the continent approached the spreading center, the down-going ocean floor became progressively warmer and more buoyant. The ocean floor didn’t “want” to go down, but it was still attached to the older, colder floor ahead of it that was going down. So, the ocean floor went under the continent, but stayed high rather than sinking, and rubbed along the bottom of the crustal rocks rather than plunging steeply into the mantle. The friction between this buoyant subducted ocean floor and the crust above, in turn, caused thrust-faulting and crustal thickening far inland (see the figure just below). Because the western part of the country has been built up of many old rock bodies and sediment piles bulldozed from the Pacific, there are scars of many old faults and other geological features that have been reactivated by the recent events, so mountains and valleys have formed along the old weaknesses in response to the new pushes.

Formation of the Rocky Mountains. Diagram explained in text.
The Rocky Mountains are surprisingly far from the coast for mountains linked to a subduction zone. The diagram shows the most-likely explanation, which is that the subducted slab did not sink as rapidly as normal for a while, and friction along its upper surface rumpled the overlying rocks of North America to raise the Rockies.
Credit: R.B. Alley

As to exactly how this came to produce 14,000-foot (4300-m) peaks in the Rockies, geologists can tell the story, but it isn’t clear that any geologist could have predicted this story without seeing the rocks first. Science moves from explanatory (easier) to predictive (harder), so we still have some work to do. (And, we've oversimplified a bit here; see the Enrichment for more.)

If you drive west from Boulder up the slope to Rocky Mountain National Park, you will go through sedimentary rocks, made from sediments brought down from the current Rockies and from earlier versions of the Rockies. As folding and faulting pushed up the mountains farther west, and as erosion of those peaks allowed “bobbing up” of their thickened deep root, the sedimentary rock layers were tilted (see the figure below), so you actually will be driving into older and older rocks as you go. Eventually, you will reach the heart of an old (Precambrian) mountain range that also forms the heart of the modern one. Even to a casual observer, the rocks here have been “beaten up.” Follow a single layer in a rock, and you will see that the layer twists and bends, doubles back on itself, or even pinches out in places. Analyze the rocks chemically, and you will find a composition similar to the common sedimentary “mud” rock called shale, but the rock clearly is not shale.

Folding and faulting of the Rockies. Diagram explained thoroughly in text.
At Rocky Mountain National Park, and along the nearby Rockies, the highest peaks were folded upward as a sort of giant rumple. Erosion has removed the younger rocks on top, exposing old igneous and metamorphic rocks in the center of the mountain range. Younger sedimentary rocks were tipped up along the sides of the mountains, and can be seen by tourists driving west toward the national park.
Credit: R.B. Alley

Cooking the Earth

Think about cooking. If you mix up a bunch of ingredients to make cake batter, throw the mixture into a pan and put it into a warm oven, the cake you obtain will not be very similar to the mixture you started with. Grill a steak, and the original cow part will come out quite different. Marinade the steak before grilling, and more differences appear. It is common knowledge that a material that is stable in one environment will change if it is placed in a different environment. This is true of everything (and everyone!) on Earth.

The Earth clearly has a great range of conditions. The inside of a mountain range is hotter, higher-pressure, and less affected by acidic groundwaters than is the surface. Materials that are stable at the Earth’s surface (such as the clays in a piece of shale) are not stable deep in a mountain range. The minerals change, grow, and produce new types even without melting. This process is called metamorphism. Metamorphism makes rocks that many people consider to be especially pretty, produces some wonderful gems, and contributes rock names that make good puns. (The Geoclub at Wisconsin used a metamorphic rock, a volcanic rock, and a sedimentary rock in claiming that geologists are “gneiss, tuff, and a little wacke.”) You can read a little more about rocks and minerals in the Enrichment section.

Where Tectonics Meet People: Tsunamis

We’ve been looking at the ways the planet moves rocks around and makes mountains, and some of the ways that mountain-building can be dangerous to humans. Volcanoes and earthquakes are sometimes truly dangerous and damaging. But it is worth remembering that, in the developed world, only about 1% of us die in “accidents,” and car crashes greatly dominate those deaths (so 99% of us die of other things, such as heart disease, cancer, etc.). With good scientific warnings, good zoning codes, trained medical personnel, hospitals and ambulances to take care of us, nature just doesn’t kill that many of us. (In the less-developed world, this is, sadly, less true.) For the developed world, things we do to ourselves (smoking, eating and drinking too much, not exercising enough) are far, far more destructive of health and life than anything the planet does to us.

But, it is still wise to know about the dangers from the Earth. And now that we’ve completed the tour of mountain-building, we will look at another hazard. Tsunamis are not directly related either to the Great Smokies or the Rockies, but anything that makes earthquakes, volcanoes, or really steep slopes in or near the sea might be involved in a tsunami. And tsunamis can be truly horrific. We’ll start with a surprising hot-spot tsunami, and then look at some others.

On the flanks of many of the Hawaiian Islands, including Lanai, Molokai, and Maui, to at least 1,600 feet (500 m) in elevation, there are deposits of broken-up, mixed-up, battered corals, other shells, and beach rocks. Corals are undersea creatures, and surely don’t grow 1,600 feet above sea level. Some corals grow just below sea level and later are raised above the water by mountain-building processes; however, these Hawaiian deposits occur on islands that are sinking as they slide off the “hill” made by the rising motion of the hot rock of the Hawaiian hot spot, and the deposits are geologically too young to have been raised so far by mountain-building processes. Clearly, something strange happened.

One of the deposits in particular is the same age as a nearby, giant underwater landslide, as nearly as the age can be measured, which may suggest something. The Hawaiian volcanoes have rather gradual slopes above the water, where the hot, low-silica lavas spread out to make shield volcanoes. But when lava hits the water, the hot flows cool and freeze very quickly, and can make steep piles. Too steep, and eventually the side of the island fails in a great landslide, perhaps when melted rock is moving up in the center of the island and shoving the sides out to make them steeper. Surveys with side-scanning sonar have shown where several such slides have slipped. (Try saying the previous sentence five times fast!) Such slides can be miles thick, tens of miles wide, and over 100 miles long.

Now, if a chunk of rock miles thick and tens of miles wide suddenly starts moving, maybe at hundreds of miles per hour, it will shove a LOT of water out of the way. Where will the water go? The answer is that it will make a huge wave, or tsunami, that will race up any land it encounters after crossing the ocean. Imagine a wave that would run far inland and reach heights of 1,600 feet above sea level. Fortunately, the highest deposits in Hawaii are from a tsunami about 110,000 years ago, long before people were in the way there. Although many such tsunami-generating landslides have occurred, they typically are spaced thousands of years apart or more. But, we can’t absolutely guarantee that there won’t be another one.

The word tsunami comes from two Japanese words, for harbor and wave, a sort of shorthand for a wave that devastates a harbor. Most tsunamis are generated by undersea earthquakes, but undersea landslides or volcanic eruptions, and even meteorite impacts in the water, can generate tsunamis.

Tsunamis move rapidly across the deep ocean, with speeds of 300 to 500 miles per hour (600 to 1000 kilometers per hour). In the deep ocean, the “bump” of water that is the wave of a big tsunami may be only a very few feet high, but may extend well over 100 miles in the direction it is moving. Waves slow down as they enter shallower water, and the leading edge of a wave hits shallow water before the trailing edge. So, the leading edge slows as it nears the coast, the trailing edge catches up, and the wave goes from being long and low to being squashed and high. Even so, the tsunami wave is usually not a towering wall of water, but a strong surge, something like the tide coming in but higher (hence the mistaken name “tidal wave”).

See caption and text.
A tsunami wave is long and low in deep water, but “friction” with the ocean bed as the wave enters shallower water slows the front of the wave down while the back catches up, causing the wave to become high and short, as shown in this diagram.
Credit: R.B. Alley

An especially nasty feature of a tsunami is that the water often goes out before it comes in (waves consist of troughs and crests, and some places get the crest first while other places get the trough first). The sudden retreat of water and exposure of the sea floor tempts people to walk out and look around. Then, the ocean returns faster than a person can run. The outcome is predictable and unpleasant.

Terrible tsunamis have occurred. Still horribly fresh in our memories is the Indian Ocean tsunami of 2004, which was triggered by the second-largest earthquake ever recorded, and which killed over 300,000 people. Japan was much better prepared for the 2011 Tohoku earthquake, but almost 16,000 people still died, mostly from the tsunami. The massive 1883 explosion of the volcano Krakatau in Indonesia essentially destroyed the island, with tsunami waves observed as far away as England. Floods raced miles inland on Java and Sumatra, with probably tens of thousands of deaths. Another volcanic eruption, likely in the 1600s BC, of the Greek island volcano Santorini, pushed a tsunami perhaps 300 feet (100 m) or more high across the coast of Crete, and may have contributed to eventual demise of the Minion civilization there. Many commentators have suggested that this is the source of the myth of Atlantis. The great 1964 Alaska earthquake generated a deadly tsunami that killed 118 people, with deaths as far away as California. In 1958, an earthquake-caused landslide in Lituya Bay, Alaska, caused a tsunami that included a wave 50-100 feet high out in the bay, which a father and son safely rode out in a boat. They watched in awe as the wave then ran 1,800 feet up an adjacent coast; five people were killed in the event.

There isn’t a whole lot that can be done to stop tsunamis, but loss of life and property damage can be limited. Tsunami warning systems are functioning in many places, and are being extended rapidly. When instruments (called seismometers) sense the shaking of the Earth from a large undersea earthquake, volcano, or other disturbance, if characteristics suggest that a tsunami is likely, communications are sent out to various agencies concerned with safety, and sirens or other warnings on beaches are activated to get people away from the coast before the tsunami arrives.

The Indian Ocean tsunami seems to have been especially deadly in places where human activities had caused damage to the coral reefs and coastal vegetation that would have blunted the strength of the wave, so maintenance of these natural buffers can help the people living there. And, scientists can figure out where tsunamis are likely, how big and how frequent they are likely to be, and then zoning codes can be enforced so that people build in appropriately safe ways on appropriately safe land if they want to live in an area.

Virtual Field Trips

Join Dr. Alley and his team as they take you on "virtual tours" of National Parks and other locations that illustrate some of the key ideas and concepts being covered in Unit 4.

TECH NOTE - Click on the first thumbnail below to begin the slideshow. To proceed to the next image, move the mouse over the picture until the "next" and "previous" buttons appear ON the image or simply use the arrow keys.

Virtual Field Trip #1: Great Smoky Mountains

Park Service Map of Great Smoky Mountains National Park.
Great Smoky Mountains National Park (Park Service Map) and obduction slide show—all pictures by R.B. Alley unless otherwise indicated.
Thunderstorm over Great Smokey Mountains National Park.
Thunderstorm over Great Smoky Mountains National Park. The Smokies are the wettest spot in the lower-48 except for the Pacific Northwest, with the high elevations scraping rain out of the sky to water the wonderful forest.
Bridge with a stream running under it, Great Smoky Mountains National Park.
Bridge, Great Smoky Mountains National Park. The abundant rainfall in the Smokies feeds numerous beautiful streams, such as seen here and in the next picture; many streams host native brook trout.
Close-up view of a stream in the Smokies.
Close-up view of a stream in the Smokies.
A Waterfall in the Smokies.  Picture taken in 1954.
This photo and the next, from the USGS archives, were taken by W.B. Hamilton in 1954. They show two of the many beautiful waterfalls in the Smokies. A little extra description of waterfalls is inserted between the two.
Two Waterfalls.
Waterfalls usually indicate something interesting in recent geological time; water flows faster and erodes more on steeper slopes, so waterfalls quickly become rapids. Hence, these waterfalls suggest a recent event, perhaps of mountain-building. Yet, the newest scientific studies suggest that conditions have not changed recently. The debate is more than academic; if mountain-building has occurred recently, then the risk of earthquakes is higher than it otherwise would be, with implications for zoning codes and construction practices and emergency services. Although the basic outline of geology is well-known, large and important questions remain!
Another Smoky Mountain waterfall.
Another Smoky Mountain waterfall photo from the USGS archives, taken by W.B. Hamilton in 1954.
Late-autumn view with ridges fading into the distance.
Late-autumn view, Great Smoky Mountains National Park. The ridges fading into the distance are typical of the Appalachians.
Mountain laurel, Great Smoky Mountains National Park.
Mountain laurel, Great Smoky Mountains National Park. The ridges of the Smokies are mostly sandstones, metamorphic rocks, and granites, which give rise to fairly acidic soils that are favored by rhododendron, azaleas (next pictures), and laurel, among others. Limestones in places produce less-acidic soils and host different plants.
Flame azalea, Great Smoky Mountains National Park.
Flame azalea, Great Smoky Mountains National Park. About 10,000 species of plants and animals are known to live in the park, and many more are probably present.
The leaves of rhododendron behind a cascading stream.
The leaves of rhododendron form the backdrop for the cascading stream in this scene from the Smokies.
Goat’s-beard, a common wildflower of the Smokies. Green leaves and a plume of small white flowers.
Goat’s-beard, a common wildflower of the Great Smokies.
Old-growth forest in Great Smoky Mountains National Park. Deciduous trees with undergrowth and small evergreens
Historical (1953) USGS photo by W.B. Hamilton showing old-growth forest in Great Smoky Mountains National Park.
Metamorphic rocks near Cades Cove, Great Smoky Mountains National Park
Metamorphic rocks near Cades Cove, Great Smoky Mountains National Park. Heating caused former muds to change into new minerals, and squeezing caused the prominent folds seen. A rich and varied geological history is recorded in the diverse and beautiful rocks of the Smokies. USGS photo by W.B. Hamilton, 1953.
Map of the Folded Appalachians including State College, Mt. Nittany and Raystown Lake.  The caption is on the next page (see text alternative).
Folded Appalachians; caption on next page.
The Great Smoky Mountains were raised to their present elevation by obduction.
The Great Smoky Mountains were raised to their present elevation by obduction, when Africa and Europe collided with North America as the proto-Atlantic Ocean closed. The whole Appalachian chain formed with the Smokies, including the Valley and Ridge Province—the folded Appalachians—in which State College, PA lies. This autumnal NASA photograph shows State College and Mt. Nittany near the top center, as indicated. The ridges appear orange, the valleys white and blue (some of the coloration is “false-color”—NASA takes subtle differences in appearance and makes the differences appear bigger by changing the color scheme), and Lake Raystown is the black body near the center. From NASA’s Remote Sensing Tutorial.
Arial view of The Great Smoky Mountains (lower-right), the folded Appalachians (center), and the Cumberland Plateau (upper left).
The Great Smoky Mountains occupy the lower-right part of this image, with the folded Appalachians across the center and the Cumberland Plateau in the upper left. The false-color image is from the NASA Remote Sensing Tutorial.
test car crashed into a wall.  The hood is crumpled.
Obduction, which produced the Great Smokies, the folded Appalachians, the Himalaya, etc., has some things in common with running a car into a brick wall or another car—something long and thin becomes short and thick, with folds and push-together faults. This rather elegant example is from crash-safety testing by the Department of Transportation, Transportation Statistics Annual Report 2000.

Virtual Field Trip #1: Great Smoky Mountains
Click Here for Text Alternative for Virtual Field Trip #1

Image 1: Park Service Map of Great Smoky Mountains National Park

Image 2: Thunderstorm over Great Smoky Mountains National Park. The Smokies are the wettest spot in the lower-48 except for the Pacific Northwest, with the high elevations scraping rain out of the sky to water the wonderful forest.

Image 3: A stone bridge over a stream. Caption: Bridge, Great Smoky Mountains National Park. The abundant rainfall in the Smokies feeds numerous beautiful streams, such as seen here and in the next picture; many streams host native brook trout.

Image 4: Close-up view of a stream in the Smokies. There are many large rocks with white water rushing around them.

Image 5: A waterfall in the Smokies. Caption: This photo and the next, from the USGS archives, were taken by W.B. Hamilton in 1954. They show two of the many beautiful waterfalls in the Smokies. A little extra description of waterfalls is inserted between the two.

Image 6: Two waterfalls in the Smokies. Both photos from the USGS archives were taken by W.B. Hamilton in 1954. Caption: Waterfalls usually indicate something interesting in recent geological time; water flows faster and erodes more on steeper slopes, so waterfalls quickly become rapids. Hence, these waterfalls suggest a recent event, perhaps of mountain-building. Yet, the newest scientific studies suggest that conditions have not changed recently. The debate is more than academic; if mountain-building has occurred recently, then the risk of earthquakes is higher than it otherwise would be, with implications for zoning codes and construction practices and emergency services. Although the basic outline of geology is well-known, large and important questions remain!

Image 7: Another Smoky Mountain waterfall photo from the USGS archives, taken by W.B. Hamilton in 1954.

Image 8: Late-autumn view, Great Smoky Mountains National Park. There are evergreens in the foreground, a dark blue ridge directly behind the evergreens, and then many smaller mountain ridges fading into the distance as typical of the Appalachians.

Image 9: Close up of mountain laurel in Great Smoky Mountains National Park. Caption: The ridges of the Smokies are mostly sandstones, metamorphic rocks, and granites, which give rise to fairly acidic soils that are favored by rhododendron, azaleas (next pictures), and Laurel, among others. Limestones in places produce less-acidic soils and host different plants.

Image 10: Flame azalea with orange flowers, Great Smoky Mountains National Park. Caption: About 10,000 species of plants and animals are known to live in the park, and many more are probably present.

Image 11: A stream with rhododendron in the background.

Image 12: Close up of Goat’s-beard, a common wildflower of the Great Smokies. The Goat's-beard has dark green leaves and a plume composed of tiny white flowers.

Image 13: Old-growth forest in Great Smoky Mountains National Park. There are large deciduous trees with smaller evergreens growing below the trees and short undergrowth. Historical (1953) USGS photo by W.B. Hamilton.

Image 14: Metamorphic rocks near Cades Cove, Great Smoky Mountains National Park. Heating caused former muds to change into new minerals, and squeezing caused the prominent folds seen. A rich and varied geological history is recorded in the diverse and beautiful rocks of the Smokies. USGS photo by W.B. Hamilton, 1953.

Image 15: Remote Sensing Image of the folded Appalachians.

Image 16: Remote Sensing Image of the folded Appalachians. The Great Smoky Mountains were raised to their present elevation by obduction, when Africa and Europe collided with North America as the proto-Atlantic Ocean closed. The whole Appalachian chain formed with the Smokies, including the Valley and Ridge Province—the folded Appalachians—in which State College, PA lies. This autumnal NASA photograph shows State College and Mt. Nittany near the top center, as indicated. The ridges appear orange, the valleys white and blue (some of the colorations is “false-color”—NASA takes subtle differences in appearance and makes the differences appear bigger by changing the color scheme), and Lake Raystown is the black body near the center. From NASA’s Remote Sensing Tutorial.

Image 17: Another Remote Sensing Image of the folded Appalachians. The Great Smoky Mountains occupy the lower-right part of this image, with the folded Appalachians across the center and the Cumberland Plateau in the upper left. The false-color image is from the NASA Remote Sensing Tutorial.

Image 18: A crash test car crashed head-on into a wallm with the hood crumpled together. Caption: Obduction, which produced the Great Smokies, the folded Appalachians, the Himalaya, etc., has some things in common with running a car into a brick wall or another car--something long and thin becomes short and thick, with folds and push-together faults. This rather elegant example is from crash-safety testing by the Department of Transportation, Transportation Statistics Annual Report 2000.

Virtual Field Trip #2: Rocky Mountains

National Park Service Map of Rocky Mountain National Park, Colorado.
A quick field trip to Rocky Mountain National Park, Colorado. If you want to see elk, bighorns, big mountains, and big marmots, Rocky Mountain is great AND It has some beautiful metamorphic rocks, which we’ll look at in a minute. All photos by Richard Alley; map from the National Park Service.
A Clark’s Nutcracker (bird) sitting on top of a rock.
Clark’s nutcrackers are well-known moochers at campsites and highway pull off. Feeding the animals is not allowed, however.
Bighorn sheep standing by the side of the road.
Bighorn sheep are common in the park and often come right down by the road near Sheep Lakes in Horseshoe Park.
an elk in a field eating grass.
Elk are also common in the park and make a bit of a nuisance of themselves in nearby Estes Park sometimes. As for students, breakfast is the most important meal of the day for elk.
Mountain peaks with small glaciers rise above Bierstadt Lake
Rocky Mountain is best known for its rocky mountains (duh…). Here, peaks with small glaciers rise above Bierstadt Lake.
Ouzel Lake, one of several lakes that were carved by glaciers in the park
Glaciers carved numerous lakes in the park, to which we will return later. Here is Ouzel Lake (an ouzel, or dipper, is a small gray bird that walks underwater looking for food).
Flattop Mountain crowned by tundra
Flattop Mountain is crowned by tundra, short plants growing on permanently frozen ground (permafrost), another topic for our next visit to the park.
Looking down on glacier-carved Emerald Lake
Glacier-carved Emerald Lake, between Flattop and Hallets Peaks, is beautiful when viewed from above.
Horseshoe Park, a glacier carved valley
Horseshoe Park. Trail Ridge Road runs along beaver ponds in the lower-right side. The ridge behind the beaver ponds is a moraine, pushed up by a glacier that filled the valley beyond during the ice age. Sheep Lakes, in the upper left, are frequented by bighorn sheep.
Alluvial fan from the Lawn Lake Flood.
Alluvial fan from the Lawn Lake Flood. In 1982, a dam failed far above this site, unleashing a flood that killed three people. The road crossing the fan shows the great size of the deposit.
A bog orchid that is found in the park.
On a happier note, the park has glorious wildflowers, such as the bog orchid shown here.
Calypso or fairy-slipper orchids found on the forest floor.
Calypso or fairy-slipper orchids are common on the forest floor on both the east and west sides of the park; this one is in the Wild Basin, an outstanding hiking destination.
This cliff on the side of Hallets Peak is several hundred feet high.
This cliff on the side of Hallets Peak is several hundred feet high. The darker metamorphic rocks are cut by lighter-colored igneous rocks that were squirted in while melted and then froze.
Close up of metamorphic rock  shows layering and folding.
A close-up of a metamorphic rock (called gneiss; nickel for scale) shows beautiful layering and folding that formed when the rock was heated almost to melting. Remarkably, this rock started as mud and then recrystallized under heat and pressure.
Metamorphic rock with a red garnet in the center.
Metamorphic rocks often develop interesting minerals, such as the red garnet in the center of the picture. The rock folded around the harder garnet as it grew from the parent mud.

Virtual Field Trip #2: Rocky Mountains
Click Here for Text Alternative for Virtual Field Trip #2

Image 1: National Park map of Rocky Mountain National Park. A quick field trip to Rocky Mountain National Park, Colorado. If you want to see elk, bighorns, big mountains, and big marmots, Rocky Mountain is great AND It has some beautiful metamorphic rocks, which we’ll look at in a minute. All photos by Richard Alley; map from the National Park Service.

Image 2: Clark’s nutcrackers (bird) sitting on a rock. Clark’s nutcrackers are well-known moochers at campsites and highway pull-offs. Feeding the animals is not allowed, however.

Image 3: Bighorn sheep standing beside a road. Bighorn sheep are common in the park and often come right down by the road near Sheep Lakes in Horseshoe Park.

Image 4: Close up of an elk eating grass and wildflowers. Elk are also common in the park and make a bit of a nuisance of themselves in nearby Estes Park sometimes. As for students, breakfast is the most important meal of the day for elk.

Image 5: Rocky Mountain peaks with small glaciers rising above Bierstadt Lake.

Image 6: Rocky Mountain peaks with small glaciers rising above a lake. Glaciers carved numerous lakes in the park, to which we will return later. Here is Ouzel Lake (an ouzel, or dipper, is a small gray bird that walks underwater looking for food.)

Image 7: Top of Flattop Mountain. It is crowned by tundra, short plants growing on permanently frozen ground (permafrost), another topic for our next visit to the park.

Image 8: View of Glacier-carved Emerald Lake, between Flattop and Hallets Peaks, from above. The photographer is standing at the top of a cliff, looking straight down into a lake. The lake is surrounded by mountains.

Image 9: View of Horseshoe Park, a glacier-carved valley. You can see trails, a road, and lakes. Trail Ridge Road runs along beaver ponds in the lower-right side. The ridge behind the beaver ponds is a moraine, pushed up by a glacier that filled the valley beyond during the ice age. Sheep Lakes, in the upper left, are frequented by bighorn sheep.

Image 10: Alluvial fan from the Lawn Lake Flood. In 1982, a dam failed far above this site, unleashing a flood that killed three people and left the trail of sand, rock, and debris running down the mountain and ending in a triangular area of debris. The barely visible road crossing the fan shows the great size of the deposit.

Image 11: Close up of a bog orchid. The park has glorious wildflowers such as this bog orchid.

Image 12: Close up of a calypso or fairy-slipper orchid . Calypso or fairy-slipper orchids are common on the forest floor on both the east and west sides of the park; this one is in the Wild Basin, an outstanding hiking destination.

Image 13: A cliff on the side of Hallets Peak that shows dark metamorphic rock and streaks of lighter colored igneous rocks. This cliff on the side of Hallets Peak is several hundred feet high. The darker metamorphic rocks are cut by lighter-colored igneous rocks that were squirted in while melted and then froze.

Image 14: A close-up of a metamorphic rock (called gneiss) shows beautiful layering and folding that formed when the rock was heated almost to melting. Remarkably, this rock started as mud and then recrystallized under heat and pressure.

Image 15: Metamorphic rock with a red garnet in the center. Metamorphic rocks often develop interesting minerals, such as the red garnet in the center of the picture. The rock folded around the harder garnet as it grew from the parent mud.

Virtual Field Trip #3: Tsunamis

Title page that simply says ‘Tsunamis’.
Tsunamis are among the most deadly natural disasters. Here are a few pictures with captions, for impact.
Map with  arrow pointing to the N. tip of Sumatra.  It says Epicenter Magnitude 9.0, Dec 26, 2004  referring to 2004 Indian Ocean tsunami.
The 2004 Indian Ocean tsunami is among the worst natural disasters ever. An immense earthquake (one of the two or three biggest ever) triggered a wave that killed over 300,000 people. Many of the resources shown here are from the United States Geological Survey.
Tall tree with branches broken off and bark scraped off up to the height of the tsunami.
Branches are broken and bark is scraped off of trees up to the height of the tsunami. The 1.5 m (5 ft) high stick does not come close to the high-water mark, which is off the top of the picture. The cartoon in the next slide shows the water height as up to 28 m (about 100 ft).
Map with arrow pointing to  Lampuuk.  At this location,  the peak water depth was 28 m (nearly 100 ft) above normal water level.
At Lampuuk (location is shown in the inset) the peak water depth was 28 m (nearly 100 ft) above normal water level, and the huge surge pushed well inland. Imagine the last time you were on the beach, at Atlantic City or Virginia Beach, and then mentally put 100 feet of water over the place where you were sunning.
steel reinforced beans broken at the base and laying across the sidewalk.
The inrush of water carrying trees, boats, etc., can have immense force. Here, steel-reinforced beams were broken by the tsunami.
A 2 ft deep hole in the sand.  The sand was found inland.  It was relocated from the shore to Lampuuk by the  tsunami.
The tsunami eroded the coast, and some of the eroded sand was carried far inland and deposited. Here, at the village of Lampuuk, 73 cm (2 ft) of sand was deposited on the dark soil at the bottom. Excavations in coastal regions can find such records of tsunamis, and help learn how frequent they are.
Before and after satellite images showing the coast at Lampuuk.  Before = green and has sand beaches.  After = brown and no sand beaches.
The difference between the before (left) and after (right) pictures of the coast at Lampuuk is sobering indeed. Satellite image acquired using Space Imaging’s IKONOS satellite and processed by the Centre for Remote Imaging, Sensing and Processing (CRISP), National University of Singapore.
Aceh, NW Sumatra, Indonesia: BEFORE the tsunami.
Aceh, NW Sumatra, Indonesia: BEFORE the tsunami Images processed by StormCenter Communications, Inc., Captured by Space Imaging Ikonos Satellite, processed by CRISP-Singapore.
Aceh, NW Sumatra, Indonesia: AFTER the tsunami.  Large parts of the land are under water.  Sinking from earthquake motions also affected this area.
Aceh, NW Sumatra, Indonesia: AFTER the tsunami Images processed by StormCenter Communications, Inc., Captured by Space Imaging Ikonos Satellite, processed by CRISP-Singapore.
Another section of Aceh, NW Sumatra, Indonesia: BEFORE the tsunami.  It is green and lush.
Another Section of Aceh, NW Sumatra, Indonesia: BEFORE the tsunami Images processed by StormCenter Communications, Inc., Captured by Space Imaging Ikonos Satellite, processed by CRISP-Singapore.
Another Section of Aceh, NW Sumatra, Indonesia: AFTER the tsunami.  Now it’s brown and much of it is underwater.
Another Section of Aceh, NW Sumatra, Indonesia: AFTER the tsunami Images processed by StormCenter Communications, Inc., Captured by Space Imaging Ikonos Satellite, processed by CRISP-Singapore.
Seward, Alaska after the 1964 Alaska earthquake.  Houses are leveled and trees are toppled.
The great Alaska earthquake of 1964 generated tsunamis from the plate motions and from landslides, and the tsunamis caused most of the deaths. Damage in Seward is shown here. 1964. Figure 4-D, U.S. Geological Survey Circular 491. Digital File:aeq00016
View of downtown Kodiak, Alaska before  and after the tsunami.  After image = many missing buildings and a boat found inland.
View of downtown Kodiak, Alaska before (top) and after (bottom) the tsunami. Notice the difference in the number of buildings before and after. Also, notice the slightly “out-of-place” boat located in the “rearranged” downtown.
A large tractor trailor bent around a tree with it’s back wheels in the air.  The force of the wave caused this.
This truck was 32 feet above sea level before the tsunami hit, two miles from Seward. The force of the wave bent the truck around the tree.
Blackstone Bay, Alaska.
Blackstone Bay, Alaska. The wave reached 80 feet above sea level, washing snow away (trees are 50-75 feet high). (1964. Figure 14-A, U.S. Geological Survey Circular 491)
Prince William Sound, Alaska with large trees broken off about 4 ft from the ground along the shore of the bay.
Prince William Sound, Alaska. Trees up to two feet in diameter were splintered by a tsunami from an earthquake-triggered underwater landslide. Since then, the Trans-Alaska oil pipeline was built, ending near here.
Man holding a large tire with a two by four sticking straight through the rubber part of the tire.
Near Whittier, Alaska. The strength of the wave, and the strange things that happen when a whole lot of energy is let loose are evident. ( U.S. Geological Survey Professional Paper 542-B.)

Virtual Field Trip #3: Tsunamis
Click Here for Text Alternative for Virtual Field Trip #3

Image 1: Title page that simply says ‘Tsunamis’. Tsunamis are among the most deadly natural disasters.

Image 2: Map with an arrow pointing to the N. tip of Sumatra. It says Epicenter Magnitude 9.0, Dec 26, 2004, referring to the 2004 Indian Ocean tsunami. The 2004 Indian Ocean tsunami is among the worst natural disasters ever. An immense earthquake (one of the two or three biggest ever) triggered a wave that killed over 300,000 people. Many of the resources shown here are from the United States Geological Survey.

Image 3: Tall tree with branches broken off and bark scraped off up to the height of the tsunami. It has a 1.5 meter stick leaning against the base for reference. Branches are broken and bark is scraped off of trees up to the height of the tsunami. The 1.5 m (5 ft) high stick does not come close to the high-water mark, which is off the top of the picture.

Image 4: Map with an arrow pointing to Lampuuk. At Lampuuk the peak water depth was 28 m (nearly 100 ft) above normal water level, and the huge surge pushed well inland. Imagine the last time you were on the beach, at Atlantic City or Virginia Beach, and then mentally put 100 feet of water over the place where you were sunning.

Image 5: Steel reinforced beams broken at the base and laying across the sidewalk. The inrush of water carrying trees, boats, etc. can have immense force. Here, steel-reinforced beams were broken by the tsunami.

Image 6: A 2 ft deep hole in the sand. The sand was found inland. It was relocated from the shore to Lampuuk by the tsunami. The tsunami eroded the coast, and some of the eroded sand was carried far inland and deposited. Here, at the village of Lampuuk, 73 cm (2 ft) of sand was deposited on the dark soil at the bottom. Excavations in coastal regions can find such records of tsunamis, and help learn how frequent they are.

Image 7: Before and after satellite images showing the coast at Lampuuk. Before = green and has sandy beaches. After = brown and no sand beaches.

Image 8: Aceh, NW Sumatra, Indonesia: BEFORE the tsunami. Images processed by StormCenter Communications, Inc., Captured by Space Imaging Ikonos Satellite, processed by CRISP-Singapore.

Image 9: Aceh, NW Sumatra, Indonesia: AFTER the tsunami. Large parts of the land are under water and all of the land is brown rather than green. Text on the image says "sinking from earthquake motions also affected this area."

Image 10: Another section of Aceh, NW Sumatra, Indonesia: BEFORE the tsunami. It is green and lush.

Image 11: Another Section of Aceh, NW Sumatra, Indonesia: AFTER the tsunami. Now it’s brown and much of it is underwater.

Image 12: Seward, Alaska after the 1964 Alaska earthquake. Houses are leveled and trees are toppled. The great Alaska earthquake of 1964 generated tsunamis from the plate motions and from landslides and the tsunamis caused most of the deaths. Damage in Seward is shown here. 1964. Figure 4-D, U.S. Geological Survey Circular 491. Digital File:aeq00016

Image 13: View of downtown Kodiak, Alaska, before and after the tsunami. The after image has many missing buildings and a boat found inland.

p>Image 14: A large tractor-trailer bent around a tree with its back wheels in the air. This truck was 32 feet above sea level before the tsunami hit, two miles from Seward. The force of the wave bent the truck around the tree.

Image 15: Blackstone Bay, Alaska. The wave reached 80 feet above sea level, washing the snow away (trees are 50-75 feet high). ( 1964. Figure 14-A, U.S. Geological Survey Circular 491 )

Image 16: Prince William Sound, Alaska. Man is standing along the coast, surrounded by trees up to two feet in diameter that were splintered by a tsunami from an earthquake-triggered underwater landslide. Since then, the Trans-Alaska oil pipeline was built, ending near here.

Image 17: Man holding a large tire with a two by four sticking straight through the rubber part of the tire near Whittier, Alaska. This shows the strength of the wave and the strange things that happen when a whole lot of energy is let loose.

Virtual Field Trip #4: Blue Ridge Mountains

winding road along the Blue Ridge Parkway, Virginia, in January. There are no leaves on the trees.
The Blue Ridge Parkway, Virginia, in January, plus some other Appalachian pictures. All photos by R. Alley. The Blue Ridge runs north from the Great Smokies into Pennsylvania. Along the top is one of the world’s best reasons for hiking boots, the Appalachian Trail. Also up there for less-dedicated hikers is the Blue Ridge Parkway, one of the National Park Service’s wonderful by-ways. Most visitors favor summer, but the rocks show better in winter.
Three pictures.  1. a house on a hill.  2. an old fence.  3.  a rock wall.  These images show human settlement along the Blue Ridge Parkway.
The Blue Ridge has a long history of human settlement. The low stone wall above helped control hogs.
Wild turkey on the forest floor and a red-tailed hawk in the trees.
Logging greatly changed the Blue Ridge, but now that large areas are protected, much of the wildlife has returned, including the wild turkey (left) and red-tailed hawk (right).
Three pictures.  1.  The reconstructed narrow-gauge railroad tracks,. 2. Tulip tree branches. 3. Two hairy sumac stems.
The reconstructed narrow-gauge railroad is like those used in logging tulip (upper right) and other trees a century or more ago. The hairy sumac, (above left), is outlined against taller trees behind.
Two images.  1.  Waterfall.  2. The Blue Ridge Mountains with fog in the valleys.
(top) Abundant rainfall feeds numerous streams that are cutting into the high Blue Ridge, such as the waterfall cascading over granite. (bottom) The Blue Ridge is high primarily because its rocks are harder than those in the valleys—erosion has lowered the valleys more than the mountain.
Close up of sedimentary rocks found in the Blue Ridge Mountains.
The Blue Ridge rocks include formerly sedimentary rocks—old muds and sands—that were metamorphosed by heat and squeezing deep in the Earth, tipped up on end, and then exposed by erosion.
Two close ups of sedimentary rocks.  1.  Sanding-on-end layers. 2. Layer with the track of a snail going through it.
The standing-on-end layers of rock (top) attest to the great stresses in the mountain-building. But look at the side of a layer and you may see the track of a snail or other animal, from when the rocks were still soft mud (arrow, bottom picture).
a large outcropping of greenish rock called greenstone
This greenish rock is greenstone, an old lava flow that has been metamorphosed by heat and pressure deep in a mountain range.
Sideling Hill road cut, Interstate 68, western Maryland
Sideling Hill road cut, Interstate 68, western Maryland. The visitor center with its over-the-road viewing area is well worth the stop. West of the Blue Ridge, the rocks are not as metamorphosed, but they were still bent by the obduction-collision between North America and Africa. Erosion has left the hardest rocks highest; here, those are rocks that were squeezed at the bottom of a fold.
Sideling Hill road cut along I68 in western Maryland
Another view of the Sideling Hill road cut along I68 in western Maryland. Folding squeezes the inside of a curve and stretches the outside. Fold a thick phone book and you’ll see this behavior. The arrows show the broken ends where squeezing on the inside of the fold split a layer and pushed one side over the other.
Appalachian mountains at dusk.
The folded rocks of this obduction zone, like wrinkles in a carpet, give the beautiful ridges that we know as the Appalachians.

Virtual Field Trip #4: Blue Ridge Mountains
Click Here for Text Alternative for Virtual Field Trip #4

Image 1: A winding road through the Blue Ridge Parkway, Virginia, in January - there are no leaves on the trees. The Blue Ridge runs north from the Great Smokies into Pennsylvania. Along the top is one of the world’s best reasons for hiking boots, the Appalachian Trail. Also up there for less-dedicated hikers is the Blue Ridge Parkway, one of the National Park Service’s wonderful by-ways. Most visitors favor summer, but the rocks show better in winter.

Image 2: Three images showing the long history of human settlement in the Blue Ridge Mountains. One shows a house on a hill, one shows a stone wall that was used to help control hogs, and the other shows a path through the woods. The Blue Ridge has a long history of human settlement. 

Image 3: Two images. Left, a turkey in the undergrowth. Right, an red-tailed hawk sitting in a tree. Logging greatly changed the Blue Ridge, but now that large areas are protected, much of the wildlife has returned, including the wild turkey and red-tailed hawk.

Image 4: Three images. Left, a hairy sumac tree, top right, a tulip tree with buds. Bottom right, a reconstructed narrow gauge railroad that is like those used to log tulip and other trees a century or more ago.

Image 5: Two images. Top, a waterfall cascading over granite. Bottom, fog in the valleys of the Blue Ridge. Abundant rainfall feeds numerous streams that are cutting into the high Blue Ridge, such as the waterfall cascading over granite. The Blue Ridge is high because its rocks are harder than those in the valleys. Erosion has lowered the valleys more than the mountain.

Image 6: Two images of rocks. The Blue Ridge rocks include formerly sedimentary rocks – old muds and sands – that were metamorphosed by heat and squeezing deep in the Earth, tipped up on end, and then exposed by erosion.

Image 7: Two images. Top shows layers of rock running vertically to the ground. Bottom, a snail path in the hardened rock. The standing-on-end layers of rock (top) attest to the great stresses in mountain-building. But look at the side of a layer, and you may see the track of a snail or other animal, from when the rocks were still soft mud.

Image 8: This greenish rock is greenstone

Image 9: A greenish rock outcropping. The greenish rock is greenstone, an old lava flow that has been metamorphosed by heat and pressure deep in a mountain range. Sideling Hill road cut, Interstate 68, western Maryland.

Image 10: A truck driving by on the highway next to Sideling Hill road cut along I68 in western Maryland. Folding squeezes the inside of a curve and stretches the outside. Fold a thick phone book and you’ll see this behavior. The arrows show the broken ends, where squeezing on the inside of the fold split a layer and pushed one side over the other.

Image 11: Another view of Sideling Hill road cut. The folded rocks of this obduction zone, like wrinkles in a carpet, give the beautiful ridges that we know as the Appalachians.

Image 12: image with the ridges of the Appalachians in the distance. The folded rocks of this obduction zone, like wrinkles in a carpet, give the beautiful ridges that we know as the Appalachians.

Word Document of Unit 4 V-trips

Want to see more?

Here are some optional vTrips you might also want to explore! (No, these won't be on the quiz!)

Death Valley National Park
(Provided by UCGS)

Death Valley National Park - 3D version
(Provided by UCGS - red/cyan stereo viewing glasses required)

GeoMations and GeoClips

There are two Unit 4 GeoMations (animations) and three GeoClips (movies) linked below. We hope they help you understand and enjoy Unit 4.

GeoMations:

The Rockies

The Rockies
Click Here for Transcript of The Rockies Video

We've been looking at how spreading ridges under the ocean make seafloor, which moves away from them and eventually gets old and cold and sinks down. And it will be sinking down beneath a continent, often, and it will scrape things off to make the Olympic. And then it will have a big volcanic range such as the Cascades, Mount Saint Helen's, and so on.

And they will be sitting there next to the ocean, which we can draw in. And coming up from below, there will be melt to make seafloor out here. And coming up from below there will be materials that erupt at the volcanoes like that.

Now, that works all fine, but what happens when there is a little bit of a swinging down of the slab? We know that the slab is moving away from the seafloor spreading ridge, as I show here. But the slab really does have a little of this swinging down, as well, in some cases. And the continent moves to catch up with it.

And so pretty soon, the continent is going to end up getting close to the spreading ridge. And the stuff going down is then not going to be cold. It's going to be getting warmer.

And when that happens, we have to erase this, because now the materials don't want to go down anymore. You'll get something that goes more like this, with it running right underneath the edge of the continent and staying high. And where it runs under the continent and stays high, you'll get a lot of rumpling, a lot of pushing happening in this way. And so then you might expect to see something that gets pushed up like this. And we're reasonably confident that that sort of push up is what the Rockies are.

In a few cases, as in the west, where the San Andreas Fault is, in fact, the subduction zone has been pushed all the way out and has run over the spreading ridge. And the subduction zone and the spreading ridge annihilated each other. And then you've got the San Andreas Fault.

Credit: Dr. Richard Alley

Icebergs

Icebergs
Click Here for Transcript of Icebergs Video

Out in the ocean, there's a giant iceberg sitting out here. Big thing threatening the oil platforms floating around. And in the bottom of this very special iceberg, there is a really strange looking, googly-eyed space alien. And you have been given the task to go out there in your little boat sitting here in the water to get the space alien out.

Now, you're a good geosciences 10 student, and you know that all icebergs have about 1/10 above the surface, and they have about 9/10 below the surface. So you know immediately what to do. You take your gimongous chainsaw and you chainsaw off the top of the iceberg and throw it away, because you know what this will cause is that the iceberg will come bobbing up, carrying the space alien with it.

And so after it gets done bouncing up and down for a little bit, you find that the iceberg is almost as tall as it was before. It still has, sitting way down in the bottom of it, the space alien that you're trying to get to. So there's a space alien down here. And it still has about 1/10 of its height above the surface, and about 9/10 of its height below the surface.

But what you find is it's just a little bit shorter than it was, and it doesn't stick down quite as far as it did. Now you wump the top off again, and you keep wumping the top off, and you keep wumping the top off. And after a long time, you get down to a little iceberg that doesn't stick very far down.

Now it still is the same picture, that it has 1/10 above, and it has 9/10 below. And if you're not careful, you're sitting there admiring this lovely fact of science, and the space alien sticks out a giant tentacle, and it grabs your ship and throws it to the bottom of the sea. And so you'd better not do that.

However, there is a scientific piece to this. Suppose instead of space aliens, that we wanted to talk about mountain ranges. Now, we know that mountain ranges stick up above the plains. But you might not have known that they also stick down.

They have a root in the same way that an iceberg has a root that it's sitting on. There's a slight difference in that about 1/7 of a mountain range is up and about 6/7 of a mountain range is down, way down. The rocks have been heated. They've been squeezed. There's all sorts of interesting things going on and new minerals being grown.

And at the surface, the streams are sitting here, busily trying to grind away the mountain range. As the streams grind away the mountain range, why, the deep stuff will come bobbing up towards the surface. And if you come much later and look at it, you'll find that the rocks have barely any mountains left.

There's still a little bit of root with 1/7 up and 6/7 down. But now what you'll find is that the rocks that had been cooked way down, and bent way down, are very near the surface. And you can go see them.

Credit: Dr. Richard Alley

GeoClips

Creation of Waterpocket fold, shows the wrinkling
Creation of the Waterpocket Fold, includes the Ancient Fold and the Waterpocket Fold Tocay.
Public Domain via Wikipedia

In the text, you read about changes in subduction as North America neared and overran the spreading ridge in the Pacific, with the increasingly warm downgoing slab rubbing along the bottom of the continental lithosphere and squeezing and wrinkling the rocks far inland. The Front Range of the Rockies is the most dramatic evidence of the "wrinkling" from that squeezing, but many other ranges and smaller features have the same origin. All sorts of different shapes of folds and wrinkles are observed. One spectacular one, which few relatively few people visit, is the Waterpocket Fold in Capitol Reef National Park. The diagram here, from the Capitol Reef website of the National Park Service, shows the fold (of a type called a monocline, although you don't have to worry about memorizing fold types) both before and after erosion along the lovely Fremont River. You will see more of the fold with Kym Kline and Dave Janesko in the short video. (Note that the Park Service diagram and Dave-and-Kym’s demonstration are of the same thing, but viewed from opposite sides, so that Dave-and-Kym’s fold slopes down to your right and the Park Service’s slopes down to your left.)

CAUSE 2004 - Capitol Reef Monocline

Monocline Explained: Capitol Reef National Park
Click Here for Transcript of Monocline Explained Video

[MUSIC PLAYING]

We're at Capitol Reef National Park, home of the famous Waterpocket Fold. In the background, we can see it. We can see the layers dipping this way from the west, and you can't really see the layers on that side. This is a classic monocline, and it's a 100-mile long flexure in the Earth's crust. And Dave going to help show us how it formed.

This is the Earth's crust. And then 50 to 70 million years ago compressional stress came from the west and caused a bulge. And rocks on the west side were lifted up on along a thrust fault about 7,000 feet higher than rocks on the east side. Later, uplift during the uplift of the Colorado Plateau about 15 to 20 million years ago left it susceptible to erosion and the top part was eroded off. and you got many of the geological features you'll find in the park, like monoliths, and canyons, and arches.

The reason the Waterpocket Fold got it's name is when the younger layers up here were eroded, softer layers beneath were exposed and formed small basins in which water gathered in, which provided a water source for early settlers.

[MUSIC PLAYING]

Credit: Dr. Richard Alley

Metamorphic rocks—those cooked and squeezed deep inside a mountain range—are often especially pretty. At the bottom of the Grand Canyon, you can see such rocks. They were formed long ago and many miles down, and then reached the surface as erosion removed the mountains above and the deep roots of those mountains floated upward. Later, these rocks were buried again under sediments from oceans, rivers and wind, and finally revealed to us as the Grand Canyon was carved by the Colorado River. Some people—including Dr. Alley—think that these rocks are so beautiful that they're worth the overnight hike into the canyon all by themselves!

Toothpaste Rocks / Grand Canyon National Park

Toothpaste Rocks - Grand Canyon National Park
Click Here for Transcript of Toothpaste Rocks Video

[MUSIC PLAYING]

This is the most glorious place. Just look at this place. We're sitting on these old rocks, these seriously old, 1.7 billion year old rocks.

Everything around us that's black didn't quite melt. Everything around us that's pink actually did. That was molten magma squirting into cracks. And the stuff that didn't melt was like toothpaste. It was so soft, because it was so hot, that it just flowed and crinkled and folded, and--

It's been bent, and one can follow any of these layers along. And you see that they wiggle, and they come around, and then they come out here and back. And so these rocks were really, really hot. They were almost up at the melting point.

And they were being squeezed. There was mountain building of some sort going on that caused them to have squeezing and to be pushed from here to there. And as they go, very often, you get something like this folding. If you take a phone book and squeeze it, it'll fold. And in the same way, when you squeeze these rocks, you end up folding them.

The other part that's interesting, here, is that we can see these beautiful things so very well because this stream has come over them. And it's eroded them, and it's polished them. And the surface that we're on is very smooth.

But this is the heart of the mountain. This is what it would look like if you could get down in a mountain range somewhere, down there about 5 or 10 miles. And that's what we're standing on.

Migmatite. M-I-G-M-A-T-I-T-E. It's not quite magma. It's migma. Mixed magma. And you'll see all of these awesome morphs and wiggles and the little things through here.

This melted. This didn't. This melted. This didn't.

Oh, this layer-- that's beautiful. These things have been really, really hot.

Credit: Dr. Richard Alley

The Great Smokies are geologically attached to the whole Appalachian mountain range, including the ridges near Penn State’s University Park campus. There, if you’re so inclined, you can visit the beach in the mountains—all thanks to Africa.

Ancient Collisions

Ancient Collisions
Click Here for Transcript of Ancient Collisions Video

[MUSIC PLAYING]

So we're just outside of Happy Valley, Penn State, up behind the ski area on the road up to Bear Meadows. And we've stopped beside a pretty little stream to look at an old beach. The rocks behind me here are made of sand glued together with hard water deposits. They're sand stone.

This is an old beach fed by old rivers. It came down from a great mountain range that used to exist up to the east of us. Now, if you go and look at most beaches, the layers are flat. And if you look at the layer behind me, it very definitely are not flat layers.

The layers are tipped way up on edge. They're very steeply slanted. And so something fundamental has happened here to get the slant that we see out of the flat layers that used to be.

What happened here was that there was a great collision, and Africa rammed into North America. The oceans open and close, and the continents drift around, and occasionally one continent runs into another. And when there's a running into, you get a lot of breaking and you get a lot of bending. And so the rocks in this part of the world have been bent in various ways, and you get all sorts of interesting bends.

The rocks that we see behind me are one of these bends. They're the little slant on this side of the bend. And they go up here and over the top of Penn State and down on the other side in a great arch, the Nittany Anticlinorium. And we're seeing a little side of that. And that's why we have mountains in central Pennsylvania.

The same thing as the Smokies. The same thing as the Presidential Range, Mount Washington up in New Hampshire. The entire trend of the Appalachians is a result of this giant collision that bent and folded and broke the rocks.

The Atlas in Africa, the mountains up through Norway are the same thing, this giant collision that bent everything. It's happening today to make the Himalayas. And so when you see these rocks slanting up behind me, this little piece here in central Pennsylvania, it's part of the vast damage and the beauty of a collision that happened long ago.

Credit: Dr. Richard Alley

Want to see more?

Here are some optional animations you might also want to explore! (No, these won't be on the quiz!)

Tsunami Visualizations
(An extensive collection of animations on this subject)

Mountain Uplift and Erosion
(An extensive collection of animations on this subject)

Video Lecture

There are TWO Unit 4 lectures both featuring Dr. Sridhar Anandakrishnan.

Please watch the unit 4 lecture #1, Plate Tectonics III: Making Mountains & Obduction (36:10 minutes).

Unit 4 Lecture #1
Click for a transcript of the Unit 4 #1 lecture.

Welcome. This is Geology of the National Parks, GSCI10. My name is Sridhar Anandakrishnan, and I'm going to be your guide through obduction, it's a word that means collision of continents and what happens when continents collide. So, you're probably watching this somewhere in Central Pennsylvania. Maybe you're not, maybe you're off on holiday somewhere else, but State College here is certainly in the middle of central Pennsylvania. And what is remarkable about this area geologically is the so-called ridge and valley structure that stretches for hundreds and hundreds of miles to the Northeast and to the Southwest. You've seen them. You driven over them. You've had to go long ways along these ridges with Tussey Mountain on this side or Mount Nittany on this side, Bald Eagle Ridge. So, it's a very characteristic structure of this area, and it was created by obduction, by the collision of continents.

So, that's what we're going to do. Let's take a look at some pretty pictures first that will motivate what it is that we're talking about, and then we'll go to the PowerPoint presentation. This is a picture of a thunderstorm over Great Smoky Mountain National Park. Great Smoky is down in the southern US, it's just an absolutely gorgeous place. High mountains, 4,500 feet high, wooded for the most part, except for these wonderful balds that they have there, these tops of mountains that are bare for reasons that I'm not particularly clear on. But you'll be hiking through and then you'll break out into one of these balds, and you can see forever, ridge after ridge after ridge, and there's all these clouds that give it its name, the Great Smokies. And maybe there's a thunderstorm on the next ridge, or maybe it's raining over there. It really is an amazingly dramatic place. It's not that far away. It's a day's travel from here, but there's some lovely scenery in between as well. Well worth a spring break trip. You've don't have enough money to go to Cancun or something like that, time much better spent. Drive down to the Great Smokies.

Great Smokies is where the Appalachian Trail comes through, one of the most extraordinary hiking trails in the world. It goes from Springer Mountain in Georgia right up the Appalachian Mountains right up to Maine, to Mount Katahdin in Maine. And every year, there's a few people, a few hardy souls, that hike the whole thing. They start down in Georgia in the springtime and they follow the spring up through. They come up through Pennsylvania, go right up Harrisburg right up the Susquehanna Valley, and then on into New York, and then finally through the Northeast up into Maine. So, it's a beautiful place. Here's a picture of the Great Smoky Mountain Park.

There's a bridge over one of the many, many streams. You have these mountains that stick up and to the west of the Great Smokies, you've got nothing. You've got these huge planes that stretch out for miles and miles to the west, all the way through the Midwest until you get to the Rocky Mountains. And the winds build, and the weather patterns, the weather systems come down through there, and they have to climb up over the Great Smokies. And as they climb up over it, they dump all their rain down into them.

They do the same around here. We're pretty wet here in Central Pennsylvania, and one of the reasons for it is that these wind patterns and weather patterns bring a lot of water in. When you've got water, you have streams. And here's one of those streams, a close up of one of those raging torrential streams.

You can go online. This is one of our virtual trips, virtual field trips. We call them vtrips, and you can read the captions. This is just a lovely place. And you're hiking along, you'll come across one of these waterfalls. This is two views of the same one. There's some text, they're talking about why those waterfalls are where they are. So, you should have a look at this. All right?

Late autumn, things are starting to thin out a little bit, and the ridges, one after the other. You see that around here, too. One ridge after the other. You climb up on top of one, and there's another one behind it. The early European settlers were quite unsettled by this. They would get up over one ridge, and there was another one that they had to go past. Lots of lovely vegetation, mountain laurel, flame azalea. Lots and lots of animals that live in there.

This is another thing that national parks are wonderful for. They preserve flora and fauna. If we didn't have a national park in Great Smokies, who knows what would be there? Maybe it would have been logged for farmland, or a subdivision, or a highway. So, the fact that it's a national park preserves all of these wonderful critters and plants. Rhododendrons in the background. Just a lovely place. So, you should take a trip down there. So, we're going to find out why the Smokies are important to us, why the Appalachians are the way they are, why the Appalachian Trail stretches up through there.

We're going to switch out to the PowerPoint, we're going to talk about Tectonics Part Three: When Continents Collide. You get obduction — there's how the word is spelled — and we're going to plunge right into it with "Go dog go." If you can see, there's blue dog and yellow dog, and blue dog has run into yellow dog. Yellow dog is chastising blue dog for being such a poor driver. But the important thing is that the hoods of their two cars have scrunched up like an accordion. Neither one gave way. Neither one submarined under the other one. They just smashed into each other, and they accordioned up and crumpled and rumpled up.

And that's what we're seeing over here. Those rumples in the hood of the red car, and those rumbles in the hood of the yellow car, think of those as the Appalachian Mountains. That's how the Appalachians were created. Two continents collided, not go dogs, but two continents collided. And when they collided, neither one gave way. . If you remember from last time, the subduction one, when oceanic crusts and continental crusts collide, one of them gives way. One of them sinks under. And so, you don't have these types of mountains that are produced when two continents collide. When they collide, neither one wants to sink down, and so, they just crumple up, get shortened. And as they get shortened, they rise up in these peaks that we see around us here in Central Pennsylvania and down in the Great Smokies.

Here's a picture of the Appalachians. And this is a perfect shot, ridge after ridge after ridge after ridge, long skinny things. We are sitting on the hood of the blue car looking up along the hood of that car towards one of the drivers. I'm going to go back here real briefly to the go dog picture. Imagine you're sitting at that collision point, looking up along the hood. That's all it is. That's all that these Appalachians are, writ large.

Here's a photograph in West Virginia. There's a road cut where Route 68, I think, goes west through there. Now there's a wonderful visitor center where you can pull off the highway, and there's a wonderful explanation of it. You have these extraordinary curved layers. What used to be nice and flat, during the collision, they got smashed together and got turned up and turned down, and you can see that over here because the road has cut right through there, and so, they've sliced through that part of it.

So, we're going to do a quick review of what we learned last time, or the last few times. And I know we've been throwing a lot of material at you in the last few weeks, but there is a lot of material to be thrown at you. It's all available online. It's on Angel. The text is free, you just have to download it and read it, and it connects to all of this. Tectonics is driven by heat. I've said that over and over again, I'll say it again. If I ever ask you what drives tectonics, you just yell all together, heat. There are a number of plates, the upper lithosphere is broken up into eight or nine plates, and they move about on these convection cells. The convection cells are due to heat. Oceanic plates are made up of basalt, and the continental plates have more silica in them. Silica ridge, they're a lower density, they're more buoyant.

When cold ocean plates collide with buoyant continental plates, the cold ocean plates sink down. They're of high density. They just sink down, you get a subduction. When continental plates collide, that's what we're going to talk about this time. You get the Appalachian Mountain range, that stretches all the way from Newfoundland down to Alabama. In Alabama, it sinks down underneath the coastal sedimentary plane, but the Appalachians actually come up again in Oklahoma. So, they're just an enormous mountain chain.

Continents are rarely destroyed. The story gets really complicated. If you take something and you just keep piling stuff on top of it year after year, you shred it, you munch it, you fold it up, you put in a corner, you take it out, understanding its history becomes really, really difficult. The ocean is easy. It's created, it's destroyed. After 150 million years, 200 million years, all of the ocean is gone because it's been subducted and disappeared. But the continents are old. They're four billion years old. And in that time, they've had lots and lots of things done to them. And so, it becomes really difficult to know what happened in the past.

The analogy that I give is one of my colleagues— not me, of course. I have a very clean office. That's a joke. You should come see my office sometime. But one of my colleagues has a really messy office. He's an older gentleman. He's been working in the department for almost 40 years. I don't think he's thrown a thing away in that time. And you go in there, and it's piles of books and manuscripts, piles and piles of folders and papers, and rocks that he's collected, and instruments that he's collected. And so, they get jumbled up sometimes, because he pulls something out from underneath and he puts it on top. And so, understanding the relationship of these papers to each other is really difficult.

And that's the way the continents are. They've been all jumbled up, and stuff has been piled on top, and stuff has been pulled out from underneath. We're going to give it a try, though. We're going to give it a try and try and tease out the history of the Appalachian Mountains.

Here's a satellite image of the east coast of the US and the eastern Canadian Shield. And you have this very characteristic wiggly line, you can see it there, that stretches right from the southwest right up through central Pennsylvania— I hope you can recognize the Delaware River there and the Chesapeake Bay. That's where Philadelphia is. And then on up into New England, and then right off the map— that's Maine— and then right off the top would be Newfoundland and Canada. You can see that this mountain chain stretches a long, long ways, and it's got these long, linear features to it.

This is the Susquehanna Valley from space. This is looking down at just the region right around here. That's the Susquehanna River, Harrisburg is right in the middle over there. And you can see these ridges, one after the other, stretching up through there, and this river slicing through them, allowing us to work out their history. This is what we're trying to figure out. Why are the Appalachian Mountains here? What's their relationship to the rest of the world?

The Appalachians are a complicated place. They aren't simple. As I said, the analogy that I give is of my colleague who has an office and it's been filled with stuff, and stuff has been removed, and it's very hard to tell the relationship between things. But we're going to give it a try. About 300 million years ago, North America and what's now Africa and Europe collided. These two huge continents— neither of which wants to sink, because they are low density. Neither of them wants to sink under the other. It's like a game of chicken. And the two, neither of them gave way. They smashed into each other. And they crumpled up to form these huge mountain chains, possibly as high as 15,000 feet. We don't really know, but we think some of those mountains might have been as much as 15,000 feet high.

It's similar to what's going on today, right now, in India and Tibet. The Indian continent is running into the Asian continent, and as the two run into each other, you have these enormous mountain chains, the Himalayan Mountain chains. The highest spot on earth, Mount Everest, is 28,000 feet high, and it's because of this collision of India and Asia.

This is a picture of that collision. The Indian land mass was way out in the Indian Ocean 70 million years ago, and it came zooming up over the last 70 million years. And today, it has smashed into the Asian plate. And in the process of those two continental massesIndia is a continental mass, Asia is a continental mass neither one wants to give way. And they just run into each other, and they crumple up, and then the rocks in between have nowhere to go but up, and so you get these huge mountain chains of the Himalayan mountains. This is a photograph of Mount Everest. Sagarmatha is what Mount Everest is called in the Nepali language. And it's an absolutely awe-inspiring sight, first climbed by New Zealander.

So, in the process of these two continents colliding, they get shortened up. It's just like the hood of the two dogs that we saw. That's an analogy, but it's a pretty good one. You take a hood that used to be longer, you accordion it together, now it's shorter. And that's what happened with the North American continent, and presumably with the European/African continent when they collided 300 million years ago.

One of two things could happen. The first is what's known as a thrust fault. This is where, when the two continents collide, you actually do get sliding of one over the other. You don't get subduction. Nothing sinks back down into the earth. But you can think of two sheets of paper that run into each other. One just climbs up and slides over the other one. This is known as a thrust fault. You can shorten up a continent by sliding one part of it over the other. And this is partly what happened in the Great Smokies area.

And one of the reasons that we know that is that there are places where there are young rocks underneath older rocks, and this is a very unusual situation. Usually, the old rocks are on bottom, and you pile younger rocks on top. It's like my colleague with his office. He gets a book, and he puts it on top of an older book. And he gets a newer book, and he puts it on top of an older book. And then he gets a newer book, and he puts it on top of that one. And so you can look at them, and oh, there's a book that he got 30 years ago, and there's a book that he got last week. And that's this normal sequence of things. Occasionally though, he'll go and he'll pull out one of the older books and read it and put it on top of this pile, and so the whole thing gets jumbled up and you don't know the sequence. That's what's happened down in the Great Smokies area, where you have older material that's ridden up on top of younger material.

Further north, around here, the rocks are more wrinkled. They look like a kicked up rug, or a sheet of paper that has been collapsed. We've got a young kitten that we just adopted from the shelter, and boy is he ever active. And he loves our rug. We don't have one of those little rug runners, the little rubber things that keep the rug from sliding around. And so he'll run as fast as he can, and he'll attack the edge of the rug, and he'll slide into it and he'll shove that rug back. And as he does it, he'll form these wrinkles, one after the other. And he doesn't seem to realize that that's a valuable rug, but his enjoyment of it simply comes from rumbling it up.

This is a similar sort of thing that happened over here. These two continents collided. Instead of one sliding under the other, what happened is the continent got shortened, but now by being crumpled and rumpled up like a rug. The rug itself is layered. There's hard layers and soft layers. And as time goes by, you get differential erosion, that we'll talk about next.

This is a cross-section. Remember what I told you a cross-section was. If I could take something and slice it open and look at it from the edge, that would be be a cross-- look at it from the end, that would be a cross-section. This is a cross-section through State College, going from the Northwest side-- the Allegheny Plateau and the Allegheny Front on one side, going down through Bald Eagle, through Mount Nittany, through Tussey Mountain, and heading off to Southeast on the right, down towards Harrisburg and down towards Philadelphia on the right. You should recognize this. If you have ever driven from here to New York City or ever driven from here to Philadelphia, you've seen this. You have to drive up over Seven Mountains and down the other side, and then there's another valley there, and you have to drive up the next one and down the next one, and that's what's going on over here.

But if you're a geologist, you can go and look at the types of rocks that form the different mountains. And what's interesting here is that these layers, what used to be a sequence of nice flat layers, that have now been squeezed together and crumpled up, have eroded in slightly different ways. Where you used to have very hard rocks, were the high places, and those cracked and you went down into the softer material, and those just eroded right down to what are now the valleys. So paradoxically, it's where the very hardest rocks used to be very, very high up, those are what have broken through, and now we have very deep valleys there. And the ridges in between are made up of what used to be the somewhat softer areas.

Eventually, the collision stopped. These things are colliding, they're getting pushed together. Eventually, the collision stopped, and then a spreading began. Similar to what's happening in Death Valley today. Death Valley is a mid-continental spreading ridge, and that's something that also happened in this area. About 150-200 million years ago, you started to have spreading apart of this in similar fashion to what happens in Death Valley. And the Atlantic Ocean was formed. As you started to rip it apart, and then the waters rushed into that low spot that was created where the continent was spread apart.

The mountains stopped being pushed up. You're no longer shoving them together, so you've stopped shoving these mountains up into the air. As soon as you stop doing that, those mountains will start to be eroded downwards. Mountains are very rapidly eroded. This is something we'll talk about more down the road when we're talking about erosion. But when you have these high mountains, the winds blow on, the water rains on them, the glaciers build on them, and they slowly get scraped off. That's what erosion is. Erosion is simply scraping off pieces of this mountain and making it go away, and depositing them in the low spots.

But for some very interesting reasons, the mountains are still fairly fine. There are 2,000, 3,000, 4,000 foot high peaks. They used to be much higher. They used to be 15,000 feet. But even though they're very old, they haven't been scraped down to sea level yet. And we know about rates of erosion, and so we should have been able to scrape down those 15,000 feet to sea level by now, but we haven't These mountains are still up 2,000, 3,000, 4,000 feet. Why is that?

It's something called isostasy. Mountains have very deep roots. When we squeeze those continents together, the continent bulged upwards, but it also bulged downwards. When you squeeze them together, it isn't as if the bottom was flat and it's just the top that bulged up. When you squeezed it together-- think of silly putty. When you squeeze that together, it bulges out in both directions. And that's what happened with the Appalachian Mountains. Some of it bulged upwards, and some of it bulged downwards. And as the mountains are scraped off on top, these roots ride up, scrape off some more. The roots ride up, scrape off some more, the roots ride up.

And so to get this mountain scraped down to sea level, you don't just have to scrape away the stuff above. You've got to scrape away the stuff below. So I'm going to go to the drawing pad and illustrate this notion.

Obduction is the collision of continents. And about 300 million years ago, we had the North American continent, we had the African/European continent, and the two of them collided. They ran into each other. And over time, as they kept pushing against each other, you had to give way. The one had to give way. Neither of them wanted to give way, but something had to happen. And so you've got shortening of the continent, and one of the ways they shortened is that the continent rumpled up like a rug.

This is still Africa here, and this is still North America on the left. They've shoved into each other, and they have rumpled up. But in the process of rumbling upwards-- I'll go to a different color here-- they've also rumpled downwards. Wherever you see a high spot like this, they also have a low spot underneath them. You squeeze them together, and in the process of squeezing them, you squeeze upwards, and you squeeze downwards. So I'm going to zoom in on that and show that in a little bit more detail.

This is a view of one mountain peak. And it has a deep root that might be three times as deep as the mountain is high. So even if the mountain is three miles high, then the roots might be 10 miles deep, or sometimes much deeper even than that. So it depends on the density contrast between crust and mantle. After the collision, you've now created a mountain, let's say 15,000 feet high. But at the same time, you've created this deep crustal root that goes deep down into the mantle, that is squeezed downwards at the same time that the crust has bulged upwards.

Over time, the collision ended, and so the mountain stopped growing. And in fact, erosion took over, and the mountain started to be scraped away. But the mountain isn't gone yet. Even though we've scraped away and scraped away and scraped away, we've kept eroding that mountain away, it's still there. After all this time, it's still there. And the reason for that is as you scrape material away, more material bobs up from underneath. And that's the principle of isostasy. That's what we're going to talk about next.

I'm going to switch back to the PowerPoint very briefly here, and then we'll come back to this picture drawing. As the mountains are eroded, they remain high because the material from below is floating up at the same time. It's like an iceberg floating in water. You probably have heard this expression, 9/10 of an iceberg is below water and only 1/10 is sticking up. And if you remember that movie The Titanic, with Kate Winslet and Leonardo DiCaprio or somebody. The two of them are on the Titanic, they're riding along, and it smashes into the great iceberg and disappears and all of that. It's because only a little bit of it is above water, and a big chunk of it is underwater. Ice is slightly less dense than water, and so it mostly sinks down into the water, but a little bit of it sticks up.

You can do this experiment for yourself. You can go home today, get yourself a glass of water, take an ice cube out of the freezer, and just drop it in. And if you look at it, you'll see most of it is underwater, and a little teeny bit will stick up above water. If you want to do it a slightly different way, you can go up to your bathtub, take a bath, put in lots of hot water, put in some bubbles, get your little rubber ducky out, and put your rubber ducky in. You'll see that the rubber ducky floats way up. A little bit of it underwater, a little bit of it above water.

That's the principle of isostasy. Different things that have different density contrast. An ice cube in water, a rubber ducky in water, a mountain in mantle, a crustal mountain in mantle. Each of these will float in the fluid. A little bit of it will be below water, and a little bit of it will be above water. And the amount that is below water and the amount that's above water depends on the density difference between them. Ice and water have almost the same density, so most of the iceberg or ice cube is below water, and a little bit of it sticks up above water, and the Titanic can run into it because you can't see it. So that's what we're going to talk about.

We're going to show you a picture of what this iceberg looks like. Before we do that, let me review a little bit about plate collisions. We saw in the first week, pull apart, that was Death Valley. Last time or two times ago, we saw subduction. Crater Lake, Mount St. Helens, all of those. We're seeing obduction this time, and we talked about slide past very briefly when we talked about the San Andreas Fault. In slide past tectonics, sometimes these two plates, when they're sliding past each other, they won't slide very smoothly. You'll have a kink in the boundary, and where these two are sliding past each other, you'll get these big mountains being built.

This goes along with the theme of all the action is at the boundaries. It's where the plates are running past each other, it's where the plates are running next to each other, it's where the plates are running into each other. That's where all the action is, that's where the mountains are being built. So we talked about obduction. We've built the Great Smoky Mountains, and we're going to come back to isostasy in a minute.

Let's briefly take a detour to slide past tectonics. If there's a kink where these two boundary plates are running past each other, once again, you'll have these great mountains being built. The San Gabriel Mountains near Los Angeles are a perfect example of that. The San Andreas Fault wants to go straight, but it's got a little kink in it and you get these big mountains being built. All of these are examples of isostasy. Where these mountains are built, you get these high mountains, and you get these deep roots underneath. Any time you've got a high mountain on a continent, you've got a deep root underneath it.

We're going to take a little detour here. If you remember, I told you when you see that little symbol up in the corner, that means we're running off the tracks and we're going to wander off and talk about something slightly different. During World War II, there was a proposal to build an aircraft carrier from an iceberg, because it would be unsinkable. The Germans could come along-- this was an Allied project, a US and British project. The Germans could come along with their submarines and fire their torpedoes at these aircraft carriers which is made out of an iceberg, and it wouldn't sink. It would just float. And this was an actual project. It would be unsinkable.

They thought big during War II, they really did. They were in a struggle for their lives, and for their way of life, and they would do whatever they needed to do to survive. And they came up with what now seems like a perfectly ridiculous idea, but it was actually taken forward quite a ways. It was called project Habakkuk, not quite sure why Habakkuk. There was a small one that was built on Lake Louise. As a glaciologist, I find it very interesting, things that people do with ice. But this was quite a visionary project that never went anywhere.

Back to the track. We're going to talk about the Rocky Mountains next. That's going to be another example of mountains built within a content. We've seen how obduction can create the Appalachian Mountains, how they will rise up high and they'll have deep roots. And as you scrape away the top of the mountain, the bottom will rise up to take its place, and so you've got to scrape away some more, and more and more has to come up. So that was obduction. You can also produce mountains at a kink in a slide past boundary.

So now, I think we've run into just about every type of mountain building mechanism. The last one that we're going to look at is one of the most unexplained, one of the most enigmatic. It's the Rocky Mountains, right in the middle of the continent. Why do we have these mountains way in the middle of the continent? That's what we're going to do next time.

Credit: Dr. Sridhar Anandakrishnan

Now watch part 2, Plate Tectonics III, Mountain Building & Obduction (34:47 minutes)

Unit 4 Lecture #2
Click for a transcript of Unit 4 #2 lecture.

Hi, welcome to GESCI 10, geology of the national parks. This is our section on building mountains, tectonics and building mountains. And we're gonna go to the Rocky Mountain National Park in the middle of the continental US, take a look at it. My name is Sridhar Arandakrishnan, and I'll be your guide through this part of it.

The Rocky Mountain National Parks are an absolutely stunning place. You have to go there. They are very near Denver. You can fly right into Denver, drive up to Boulder where the University of Colorado is. Some of my colleagues work there. And right there, the front range is of the Rocky Mountains and then this magnificent panorama of mountains stretching for thousands of miles, north 1,000 miles, north and south, and hundreds of miles to the east from there, and right to the west from there, and right up onto the Colorado plateau, all right. So it's just a beautiful place, a very dramatic setting. You come from the plains of Kansas and Colorado, and then you come along, and then here's this unbelievable mountain chain. It must have been quite something for those who first saw it.

On the map here, you're seeing a map of the western US. California is right off to the west, and then you have Nevada and Utah that make up the so-called Colorado plateau, Utah and western Colorado. And then right where that Colorado text is is the edge of the Rocky Mountains. That's where Rocky Mountain National Park is, off to the east of that.

It's all plains, very flat, lots of corn, soybeans, wheat. It is classic midwestern plains country. It's nothing like what people imagine Colorado to be. They think of, when they think of Colorado, they think of majestic mountains. Eastern Colorado is very flat. It's western Colorado that has those 12,000 foot mountains, 13,000, 14,000 foot mountains, Pike's Peak, all these amazing places, all right, so all the skiing. When you think of Colorado, most people think of skiing. Well, eastern Colorado doesn't have it. It's all in the west.

We can zoom in a little bit. And you can see the transition from Denver there in the middle. And everything to the east of Denver is all plains country. It's all flat. And you can see as you go to the west from there you get those dendritic valley patterns, those white snow capped peaks, all of the complications that always go along with mountains, you get all of these little mountain valleys with little rivers and glaciers in them.

Rocky Mountain National Park itself is right here in the front ranges. And you can see the transition there even more dramatically up into the Rocky Mountains, all of the snow covered peaks, right. So this is where we're gonna take a trip to. Let's go look at some real pictures rather than looking at satellite maps. It's a place that's easy to get to and well worth the visit.

Lots of fauna there, lots of critters, birds and mammals of many different kinds, you still have wolves up in there, still have bears up in there, lots of elk and bighorn sheep, very common, all over the place. Obviously, it's a national park so hunting is forbidden. And so it's still in very much pristine condition. It is a very popular place, you drive up in there, going to the mountain, going to the Sun Road is one of the roads that goes through there. It's one of the highest roads in the lower 48. It's up at 12,000 feet. And sometimes it's just this solid mass of RVs, and campers, and pickup trucks, and SUVs stretching as far as the eye can see.

Just pull off the road, just park, get out your car, and walk in any direction. And you walk for 10 minutes and I guarantee 90% of the people will disappear, walk for another 10 minutes and 99% of the people disappear. So few people actually get out of their cars and walk, and I don't want you to be one of them. I want you to get out and walk and walk for just a little ways, just for half an hour, 45 minutes, to experience the solitude and the majesty of Rocky Mountain National Park.

All right, here it is, here's one of these Rocky Mountains. And in the foreground you have a glacially carved lake. When the glaciers came down out of the mountains 20,000 years ago they would have covered this whole area. They would have ripped up this area and pulled up this lake, pulled up this big hole. And then when the glaciers retreated water filled in that area. Now we have these lakes. There's a whole series of lakes up, wherever you have glaciers you usually have lakes that they leave behind. Glaciers are really good at digging deep holes. And this is one of them. Here's another picture of [? Usal ?] Lake and looking up at this glacial valley behind it, really a magnificent place.

This is up on top of Flat Top Mountain. You have this classic alpine landscape, this short scrubby bushes, very hardy little shrubs that manage to eke out a living in the permafrost, in the high winds and the cold. The weather can change really dramatically. You start out in the morning, and you have blue sky, and it's 70 degrees, and you get up there then you need a jacket because the storm clouds have come up, as they have in this case.

This is looking down at a little tarn. Tarn is a Scottish word, I think, I'm not sure, for small mountain lake, usually glacial carved lake. These tarns can be just a few hundred feet across. And they have lovely cold water surrounded by all of that glacial moraine material around them, a few trees but not many.

This is a road that runs, a very popular road, that runs up. There's Beaver Ponds there in the lower part of it, and then behind it a moraine, that little ridge that you can see with a little bit of a brown material on it and then some trees on top. That's a moraine. That's what was left behind by a glacier. A glacier came down, pushed up this material and left that. And we'll talk about moraines next time, or not next time but down the road.

Here's an alluvial fan. This is material that's brought down by rivers and sometimes landslides, just comes down these mountain sides, lots and lots of flora, lots and lots of fauna. So I said, all of these pictures are available online on Angel. Go and take a look at these virtual field trips, orchids, and the classic Rocky Mountain rock, this sort of grayish colored, dark gray and light gray colored rocks, metamorphic rocks cut through with igneous rocks. We'll talk about what a metamorphic rock is, what an igneous rock is over the course of this class. All right, so, let's hop over to the presentation and we'll begin our talk.

The Rocky Mountain National Parks, Rocky Mountains are a mountain range. They're quite high, 12,000, 13,000 feet high. But they're in the middle of the continent. They're 1,500 miles from the ocean. Why are they there? We talked about why the Appalachians are here. They're the collision of North America with Africa and Asia 300 million years ago. They created these high mountains. All right, that's straightforward.

We talked about why Mount St. Helen's is there, or why Mount Baker is there, or why Lassen Peak, or all of those. Those were subduction zone volcanoes. The Cascade range is a volcanic arc created when oceanic crust subducted under continental crust. The question is what's on with the Rocky Mountains? Why are they where they are?

Normally, and the short answer is, normally oceanic crust will simply subduct under continental crust. If it's dense enough and cold enough it'll just go straight down and all is well. You will get the classic subduction zone situation that we now have in the Pacific Northwest. You'll get trenches and volcanoes. Occasionally, if that subducting oceanic crust is hot enough, if it was only created recently in the last half a million years or million years, it hasn't had a chance to cool off, then it's still buoyant.

Remember hot rocks are buoyant and low density. It's only when they get cold that they want to sink. So if that oceanic crust was still hot, buoyant, low density, it would go under the continent, but it wouldn't subduct straight down. And as it got pushed off to the side it would continue to scrape underneath. And I'll show you a picture of it here in a minute, but that's, in words, that's what was going on.

I grew up in New York City, and this next cartoon perfectly encapsulates my ignorance of this country as I was growing up. This is a very famous New Yorker cover called New Yorkers View of America. And you have Ninth Avenue, 10th Avenue, all of the buildings in great detail. You have the Hudson River. They might know a little bit about New Jersey. But then the rest of the continent is just this vast blank space. And it might be, you might know, oh, there's a few mountains somewhere in the middle, and there's something off on the other coast, and then there's the Pacific Ocean. So this is a famous picture of what New Yorkers think of the rest of the country.

And to be honest I have to plead guilty to that. And I was in college, I went to school in New York City, I had a friend who had an internship, a summer internship, in Denver. And I had another friend who had a summer internship in San Francisco. And the two of them are flying out, and on the last evening as they were ready to go, I said, oh, boy, you guys are lucky. The two of you will be able to visit each other on the weekends, and I'm gonna be left here all by myself in New York City. Little did I realize that San Francisco and Denver are 1,500 miles apart. And so my ignorance was stunning back then. Hopefully I know a little bit more now but there it is.

This is our picture of how the Rocky Mountains were made. We think this is what went on with them. This is an animation that's available for you online. But the short answer is that an oceanic ridge, one of these mid-ocean ridges where material is coming up from deep inside the Earth, used to be far offshore but was subducted under North America.

But because it was so close to the edge of the continent, it's still warm. And because it was still warm, it didn't sink down. And because it didn't sink down, as it scraped along underneath the western US, it shoved up the Rockies way, way far inland, all right. So even though subduction is supposed to sink down and only produce mountains at the coast as we have in the Cascades, in this case, because that subducting slab was still warm, it went along for a long ways underneath the continent shoving up the Rocky Mountains far in the interior until eventually it got cool enough, and it did sink down far deep inside. This is the leading idea for why the Rocky Mountains are where they are and how they were formed.

We don't really know. It's a little bit embarrassing to say this, but geologists have a pretty iffy understanding of the Rocky Mountains. But this is the leading idea. This is how science works. We come up with a hypothesis, somebody did, they said we think this is what's going on, all the evidence seems to support it. But people are still working hard to try and figure out whether that hypothesis meets all the data, or if somebody can come find some new data that shall know that hypothesis is wrong, in which case we'll throw this slide out, and we'll put in a new slide.

That's the wonderful thing about science is none of these slides are ever carved in stone, if you will. At any time I could just delete this slide and throw it away because somebody comes up and says, nope, I think that's wrong. So as this warm oceanic crust was subducted and slid right underneath North America long deep, deep under the continent, it shoved up the Rocky Mountains even though they're far, far inland. Whoops, sorry, going the wrong way.

The Rocky Mountains are made up of something called metamorphic rock. Metamorphic rocks are rocks that have changed from their original form. There are three main types of rocks, sedimentary rocks, which are rocks that are formed when sediments collect and over time those sediments pile up and get cemented together into a more solid mass. Sandstones, limestones, these are all sedimentary rocks, all right. Igneous rocks are another relatively straightforward type of rock. This is when you have molten material that comes up and freezes at the surface of the Earth and produces an igneous rock. These are made in volcanic zones. They are basically frozen lava and various frozen magma, very straightforward as well, all right.

Metamorphic rocks are the complicated ones. If you take any kind of rock, a sedimentary rock or an igneous rock or another metamorphic rock, and you squeeze it hard enough and you heat it long enough, it'll change its form and turn into a different kind of rock called a metamorphic rock. And where in the world can we find high pressures and high heat, deep inside the Earth, all right. That's the only place that you can get pressures and heat high enough to cook these rocks and to turn them into metamorphic rocks. So whenever you see a metamorphic rock, as we do in the Rocky Mountains and in a few places in the Appalachians, we know that those rocks, at one time, were deep down inside the planet.

[UNINTELLIGIBLE PHRASE]. See, I told you, you gotta have one mess up somewhere, right? There we go. You better cut this Eric. I'll give you money. How's that? Keep rolling.

Whenever we see metamorphic rocks up at the surface then we know that those rocks, at one time, were deep inside the Earth, that some kind of rock, either sedimentary rock or an igneous rock, was carried deep down into the planet, down to miles and miles, maybe tens of miles down into the Earth. And as those depths the heat is high enough and the pressures are high enough that the rocks can be cooked and squeezed until they are a different form called metamorphic rocks. And then they come back up to the surface.

Here's some pictures of these metamorphic rocks. Unlike igneous rocks, which are more even looking, are more regular in their form, these, as you can see, have all of these grains that are growing in them. They've been folded and twisted around because of the huge pressures that squeeze them together and the high temperatures. They can be right overturned and squeezed out like toothpaste, as you've seen, as you can see in the lower one over here.

This, by contrast, are two pictures of igneous rock. And the site we've talked about, and the site quite a bit, those are the rocks that come up in the Andes mountains, and also in Mount St. Helen's, and all of these other subduction zone volcanoes. Pele's hair is a type of igneous rock that you find in Hawaii, where you have the hot spot type of volcanism, very different looking than and very different chemically than metamorphic rocks.

So why are these metamorphic rocks at the surface? As I said the only way to form these rocks is deep inside the Earth. You got to take them, sink them down miles into the Earth where the heat is high, where the pressures are high, you cook them and squeeze them and they turn into metamorphic rocks. So what are they doing up at the surface? In fact, what are they doing up at 12,000 feet up in the Rocky Mountains? How'd they get way up there? And that has to do with isostasy, deeper rocks rise up because of isostasy. So, we're gonna go to the drawing board here and take a look at isostasy again.

Remember what isostasy was, this is a cross section of a mountain. So this is trees here, and this is the very top of the mountain. If you were standing at the top of the mountain, and you were to start to drill a hole down through it, you would go part of the way down and you would be at what's the equivalent of the surface of the Earth. But you wouldn't be to the bottom of the continental crust. The continental crust continues on under there. And, in fact, it continues way, way down into these deep roots, all right. So all of these mountains that stick up high have these deep continental roots underneath them because of the requirement of isostasy.

You have to have the same mass of material above you at any point to have equal pressures. So if you imagine a line somewhere deep down in here, the amount of weight above you is the same anywhere along that red line. That's the principal of isostasy. If you're over here the amount of weight above you is the same as if you were in the middle of the continental crust over there. But because continental material is less dense, crustal material is less dense than mantle material, you need more of it. Remember that.

If you want to have the same weight of two things but one is more dense and one is last dense, then you need more of that less dense material. You need more volume of it to get the same weight, all right. And that's what these roots and this mountain above allow you to have, is you have the same weight above you but because the continental crust is less dense you have to have more of it, which means you need a mountain rising up and the roots going down. So that's the principal of isostasy. It's a little bit subtle, but I encourage you to go and read the section in the book on this because it's an important notion.

But let's see what happens as we erode this mountain. Imagine, if you will, a metamorphic rock that has been formed inside this continental root. This black blob here represents the metamorphic rock. And we have to somehow bring that to the surface. How do we do that? The way we're gonna do it is we're gonna do it by analogy. We're gonna go and look at an iceberg. An iceberg is very much like a mountain and a mountain root. And there is an animation online that represents this, and I'll just do it very briefly here, and then we'll understand how it is that you can bring up this metamorphic rock to the surface.

Imagine, if you will, an ocean and floating in that ocean you have an iceberg. Ice should be white. It's a little hard for me to draw a white iceberg against a white paper here. So we're gonna make it black. The blue, obviously, represents the ocean. Blue is always ocean. So here we have our iceberg floating in the ocean. Because of isostasy a little bit of it, some of it, is above the ocean, about 1/10, and most of it is under the ocean, about 9/10 of it. OK?

That's because water and ice have almost the same density. So, if I need to have the same weight of material above me, I only need a little bit extra ice. I can go over here. I can draw my same line that I did before. I can go here. I can figure out the weight of water above me. I can go to the same point in the iceberg, and I gotta have the same weight of stuff above me. That's the principal of isostasy. And I only need a little bit extra ice, but I do need that extra ice. And so I need about 1/10 more ice because the density of ice is only a little bit less than the density of water. And so I need a little bit more ice to get the same weight, the same total weight, of stuff above me, OK. So that's isostasy once again.

But let's see how this helps us with bringing metamorphic rocks to the surface. Same picture, ocean, iceberg, but this time, for the sake of argument, I'm going to introduce a space alien into this. We're going to take a space alien, and imagine that a long time ago a space alien crashed into Antarctica and got trapped in this iceberg, and more snow fell on it and more snow and more snow, and eventually somewhere down deep inside this iceberg we have a space alien, big eyes, antenna, stuck inside this iceberg. How can we get the space alien out? Well, it's gonna happen naturally anyway. Why? Because as the top of the iceberg melts the iceberg has to bob up to replace it, all right.

Let's follow that through. Let's do a little thought experiment. Let's say I could magically take everything that's above water and simply slice it off and cart it away, all right. So we're gonna just take everything above water and slice it off and cart it away. And this is what we would be left with. And the space alien would be stuck down in here, same as before. Nothing's changed except that because of isostasy this is unstable.

That iceberg will want to naturally bob up. It has to. Because at any given depth the weight has to be the same above that spot. And in this situation the weight here is more than the weight here, all right. Water is more dense than ice. And so if you'll have the same amount of water and ice then the ice has less total weight. And so what happens next is that the iceberg bobs up in the water a little bit. Remember what we did is we just sliced off magically everything above water. Iceberg bobs up, and the space alien who is embedded in here also bobs up with that.

Let's do it again. Let's once again slice off everything that's above water. I'm gonna erase this ocean. And, once again, we slice off everything above water, and the iceberg would bob up again like this, and the space alien would now be at the surface. I hope you understand that that's an analogy. They don't really have space aliens in the Antarctica ice although according to The X Files we do. That was a terrible movie by the way. But nevertheless it did posit the presence of space aliens in the Antarctic ice.

What we do however have is that the Rocky Mountains have blobs of metamorphic rock deep inside them. And erosion slices off the top. So erosion comes along, and erosion removes the top of the mountain. And in the same way that the iceberg popped up, the roots of the Rocky Mountains also pop up. So after erosion removes the top you end up with the Rocky Mountains rising up again and the metamorphic rock along with them.

The mountains as a whole are smaller, but the metamorphic rock is at the surface or nearer to the surface. So in much the same way that glaciers can bring up these supposed space aliens with them, metamorphic rocks come up. The idea of the metamorphic rocks is a little bit more well supported than that of the space aliens, all right. We're gonna hop back to the PowerPoint here for a second, and then we'll wrap up this session.

The rocks cycle is something that is fundamental to geology. All of the rocks on the surface of the planet have been cycled and recycled and brought up. And erosion will take sedimentary rocks, and it will produce sediment which will turn into sedimentary rocks. And then subduction will carry that down. And then that rock will come back up again either as an igneous rock or as a metamorphic rock. And then it will get eroded again and produce sedimentary rock. And so this whole rock cycle says that we're always recycling all of our material on the surface. And we have to work out their history by coming up with these clever ideas and these hypotheses.

To summarize, there are three types of rocks, igneous rock formed by melting and solidification of magma, sedimentary rocks formed by erosion of other rocks and then cementing them together, and finally metamorphic rocks formed by the cooking of rocks, all right. So that's the end of this part of tectonics. We've learned about building mountains, about how you can build them at pull apart boundaries, at pushed together boundaries, and at slide past boundaries. Next time we'll move on to new material.

Credit: Dr. Sridhar Anandakrishnan

Want another look?

Check out the Unit 4 Overview, Obduction used in the online lecture here.

Optional Enrichment Article

Raising the Rockies

As noted in the text, the history of the West is quite complex, with some big questions not yet answered, and more work to be done. The most widely accepted history, with the most scientific support, is sketched in the text and given in a bit more detail just below and in the Optional Rock Video Review, The Hanging Wall.

Much evidence indicates that beginning about 100 million years ago, the subduction zone in the west grew shallower. The Pacific sea floor that was sinking under what is now Seattle is called the Farallon Plate, and rather than going down somewhat smoothly into the deeper mantle, the Farallon began to move along just beneath the lithosphere of the North American plate. The text notes that the plate was slowly getting warmer over time and thus more buoyant because the ridge and trench were getting closer together, so the plate was having less and less time to cool off before it went down the subduction zone. Another reason, and perhaps a more important reason, may be that a huge volcanic outpouring on the sea floor more than 100 million years ago made a thick layer of not-very-dense rock, which began going down the subduction zone about 100 million years ago. Where smaller bumps on the sea floor are going down subduction zones today, as off Costa Rica, features similar to those seen in the US West are forming, so the bigger features of the West are easy to explain this way.

Anyway, friction between the top of this buoyant Farallon Plate and the rocks above it—the rocks that we see in the Rocky Mountains and elsewhere in the US West—began to squeeze, bend and break those rocks above. The breaks are thrust faults, with older rocks thrust upward and over younger rocks to make the mountains. You will recall that the rocks above the fault are the “hanging wall”, which gives rise to the pun in the Rock Video.

Where a fault didn’t break all the way to the surface, it often raised the rocks above (think of lying on your back in bed under covers, and then raising your knees—the cover draping over your knees are the unbroken rocks). If the rocks were raised in a more-or-less circular pattern when viewed from above, we call the feature a dome; if shaped more like a US football when viewed from above, it may be called an arch, and a few other names are sometimes used. Such uplifts gave us the Black Hills of South Dakota, the Waterpocket Fold of Capitol Reef National Park, the Kaibab Uplift that the Grand Canyon cuts through, the beautiful San Rafael Swell of central Utah, and many other features of the West. These events mostly happened soon after 100 million years ago, during what we now call the Sevier Orogeny, and somewhat more recently in the Laramide Orogeny—we see more faults from the Sevier, and more uplifts from the Laramide.

The squeezing and thrusting of mountains caused some downwarping as well as upwarping. One of the downwarps held the lake in which the pink limestones were deposited that we now see at Bryce and Cedar Breaks, and similar lakes gave us the Green River limestones that produce such fantastic fish fossils from farther north in Utah. Oil is found in the west in rocks that accumulated in such downwarps, too.

The Farallon Plate probably eventually broke, and a new, “normal” subduction zone started up, feeding Mt. St. Helens and Mt. Rainier in the west. The Farallon Slab is now sinking beneath the eastern part of the US. As it sinks, it creates space into which hot rock flows slowly, and this may be helping “rejuvenate” the Appalachians, so the Great Smokies are a bit higher than they would be otherwise because of processes traceable back to the Rockies and the Farallon. Why the Farallon “decided” to sink eventually may be because, as it ran into thick rocks beneath the west, either some of the low-density parts were peeled off so the higher-density ones could sink, or the low-density ones were shoved deep enough that the pressure changed the mineral structures, making denser things that can sink.

Anyway, there is still much to discover about the western US. But, to catch a light-hearted version of what we know, check out the tale of a geology student trying not to be hung on the Hanging Wall.

Hangin' Wall
Click Here for Transcript of Hangin' Wall Video

[MUSIC PLAYING] PROFESSOR RICHARD ALLEY: (SINGING) I came out from the Eastlands, and so no-one made a slip. I showed 'em my intentions with a Brunton on my hip. I came out to where the mountains, cliffs, and mesas tower tall, to read the planet's story written on the hanging wall, on the hanging wall.

[MUSIC PLAYING]

I was hungry, young, and foolish when I started on my quest. But with a hammer, and a field book, and a map that pointed west, I left behind the ridges that the rivers rounded small to learn the truth or perish here hung from the hanging wall, from the hanging wall.

100 million years ago beneath Pacific brine, the Farallon was sinking down subducting smooth and fine 'til the slab of thickened sea floor tried to squeeze through spaces small. And the squeeze is on the westlands that would make the hanging wall, make the hanging wall. Severe Sevier orogeny, a thin-skinned thrusting belt, as the friction of the buoyant, thickened ocean plate was felt. It broke the rocks and thrust from westward raising mountains tall. Older rocks thrust over young to make the hanging wall, make the hanging wall.

[MUSIC PLAYING]

As the thickened crust moved eastward, and then turned to sink anew, the Laramide Orogeny raised domes and arches too. The Black Hills, Water Pocket, and the Kaibab as well, Wind Rivers and Uintas and the great San Rafael Swell, great San Rafael Swell.

From mountains rising in the west, a heavy load was shed, and now basal conglomerate records that river bed. But fining up and liming up soon gave us what it takes to wash the West's interior, Bryce and Green River Lakes, Bryce, Green River Lakes. But the spreading ridge, it hit the trench to make a slab window, a growing space that filled in with a hot, upwelling flow. The squeeze relaxed, the mountains spread, and though it may seem strange, new hanging walls dropped downward, normal faults, basin and range, normal faults, basin and range.

Volcanoes leaked up some new faults, but in other outcrops clear. In the footwalls of young normal faults, old thrust faults now appear. I can read the mighty story and it leaves me feeling small. I lift the map another day safe from the hanging wall, from the hanging wall.

I'm older now and wiser as I head back from my trek. But I won't die with a hempen rope around a stretched-out neck. There's still more to learn tomorrow as it holds me in it's thrall. I'll be back to read what else is written on hanging wall, on the hanging wall. Hanging wall, hanging wall, I'll be back to read what else is written on the hanging wall.

Credit: Dr. Richard Alley

Still more about plate tectonics and related topics

What happens when you "cook" a rock metamorphically depends on how hot, and what chemically active fluids are present, and the pressure and deviatoric stress. Both pressure and stress have units of force per area, and represent a "push" on a material. Pressure is the part of the stress that is the same in all directions--it squeezes rocks or fluids to make them smaller, but doesn't tend to change their shape. Deviatoric stress, sometimes just referred to as stress, is an extra push or pull in one or more directions, and does change the shape. Deviatoric stress has been involved in aligning the mineral grains of most metamorphic rocks into layers, or folia. Chemically active fluids—water, carbon dioxide, methane, etc.—can add or subtract chemicals, lower melting points, and dissolve and reprecipitate chemicals.

Materials that are stressed deviatorically can have one of three responses. The materials may bend and, when you release the stress, snap back (elastic deformation), they may bend permanently (plastic deformation or creep), or they may break. We have already seen examples of all of these. Earthquakes are caused by the snap-back of rocks near faults following bending. Faults such as the San Andreas are the result of breakage, and folds such as those around State College, or those in the rocks exposed in the heart of Rocky Mountain, are the result of plastic deformation.

Whether a rock bends elastically or plastically, or breaks, depends on the rock itself and on several other factors: heat (or more properly, how close a material is to melting), pressure, deviatoric stress, and even the chemically active fluids, acting over time. Elastic deformation is favored by low stresses and high pressures (to prevent breakage) and low temperatures (to prevent creep). Plastic deformation is favored by low stresses and high pressures (to prevent breakage) and high temperatures (to allow creep). Fracture is favored by high stresses and low pressures (to allow breakage), together with low temperatures (to prevent creep). Pressure matters in breakage because, to break a material, the two sides must be pulled apart, which increases the size of the material. When pressure is high, this is difficult to achieve. Fluids generally soften rocks and promote creep, although the details depend on the fluid and the rock involved. You will often see that the rocks in a region will have undergone both permanent folding and breakage, and may be bent and ready to snap back, with different modes of deformation more important in different places. Figuring this all out is fascinating, as well as useful (miners, well-drillers, and many others want to know what they'll hit in the rocks, whether the rocks are about to break, what kind of cracks the oil or gas or ores may be hiding in, and much more).

Melting and Freezing with Chemistry

If you take water and freeze it, you obtain ice that is made of the same stuff as the water. Melt the ice, and you have the water back. Melting and freezing without separating chemicals is easy to understand, but is more the exception than the rule. If you take beer and start to freeze it slowly, the crystals that form will be almost pure water ice, although each crystal typically will start to grow on a small impurity particle in the beer. Filter the crystals out, and you will have cleaned the remaining beer marginally, and you will have increased its alcohol content. Hire some advertising agents, and you have a “new” product to pitch: ice beer. (If you're under age, please substitute iced root beer. You'll end up with a lot of ice and a little sugar water.)

In the world of rocks, things are even more complex than with (root) beer. Suppose you take a piece of granite (containing quartz, mica, potassium feldspar, and a sodium-rich sodium-calcium feldspar) and melt it by heating it hot enough to melt basalt. Suppose you then start to cool it. The first minerals to crystallize may be a little bit of olivine, and a calcium-rich sodium-calcium feldspar. Cool the melt a little more, and the olivine and remaining melt react to make pyroxene, while the feldspar and melt react to make more more-sodium-rich feldspar. Keep cooling, and eventually you will get the sodium-rich feldspar and the mica, followed by the potassium feldspar and the quartz.

This ideal sequence may not be observed in many situations, but portions of it are well-known in laboratory experiments and in nature. In general, the first things to crystallize are poorer in silica, sodium, potassium and aluminum, and richer in iron, magnesium and calcium than the melt from which they grew. (Note that there are MgSiO3 pyroxenes and Mg2SiO4 olivines, or mixtures in which the Mg and Fe substitute for each other because they are almost the same size and have the same electric charge.) As the temperature drops, the early minerals react with the melt to make new minerals that are more like the original melt in composition. However, if the early minerals are removed from the melt, perhaps by settling to the bottom, they may be preserved, and exceptionally silica-rich rocks will be formed from the minerals that grow from the remaining melt. For more on the minerals, take a look at our "Sidebar" next.

Sidebar: Minerals and Rocks

If you throw a bunch of typical Earth chemicals into a pot, melt them, and cool them slowly, you will find that only certain things grow. You might, for example, find the mineral quartz (SiO2), or the mineral pyroxene (FeSiO3) or the mineral olivine (Fe2SiO4). You will not find something midway between olivine and pyroxene; it doesn’t exist. Nature puts the chemicals together in certain ways, and only certain ways. It is a little bit like building with Tinkertoys—there are only certain holes you can put the sticks into, which fix the angles at which you can build things.

Minerals are orderly—the same basic structure is repeated over and over and over (say, a silicon surrounded by four oxygens, each oxygen in contact with an iron that then contacts another oxygen that is one of four around another silicon, which is the structure of olivine). When minerals are allowed to grow freely, they assume certain shapes that look as if a gemstone-cutter had shaped them. The faces on such crystals are controlled by the underlying order of the chemicals. The classification of minerals is based on the chemical composition, and on the structure in those cases when a single composition can assume one of two or a few different structures.

Rocks are collections of minerals. One can have an all-olivine rock, or an all-pyroxene rock, or a mostly-olivine/some-pyroxene rock, or any other possible combination. We humans have chosen to classify rocks based first on their origin, and then on other characteristics such as their grain size, or their composition, or more details of their origin. The main subdivisions are igneous (rocks that formed from cooled magma or lava), sedimentary (those formed from pieces of pre-existing rocks, or from such pieces that dissolved in water and then crystallized from it), and metamorphic (those formed from igneous, sedimentary, or older metamorphic rocks by the action of heat, pressure, stress and chemically active fluids).

The classification of igneous rocks is next (we'll do igneous and then metamorphic, and save the classification of sedimentary rocks for later in the semester). We distinguish coarse-grained rocks that cooled slowly from magma deep in the Earth, and fine-grained rocks that cooled rapidly from lava at the surface; the extreme case is obsidian, a glass that cooled too rapidly to allow the high-silica types. Low-silica rocks contain the minerals olivine, pyroxene, and calcium-aluminum-rich feldspars. High-silica types include quartz, potassium- and sodium- rich/aluminum-poor feldspars, and mica. Putting these together (grain size and composition) allows us to draw the following grid:

Grain Size and Composition
-- Low Silica Medium Silica High Silica
Small Grains Basalt Andesite Rhyolite
Large Grains Gabbro Diorite Granite

Of these, basalt dominates the sea floors, andesite dominates island arcs, and granite to diorite are common in the hearts of mountain ranges. Many other types occur, but these are the most important ones.

Side Bar: Metamorphic Rock Classification

The commonest sedimentary rock is shale or mud rock, and the commonest metamorphic rocks are formed from sedimentary rocks. For our purposes, then, we will just list the metamorphics that are formed from shale. With increasing heat (or time), the crystals get bigger, and some new minerals are formed. The general trend is shale (essentially mud rock), slate (harder, clinks rather than thuds when you rap it, but with grains too small to see), schist (lots of micas, grains visible to the naked eye), and gneiss (minerals have separated into dark and light layers). All of these are foliated—they appear layered. The foliations in shale come from sedimentation of small clay flakes. Those in slate, schist and gneiss come from alignment of mica grains that grow in the rock, in a direction controlled by the squeeze in the mountain range. Contact metamorphic rocks—those around igneous intrusions—don’t have the squeeze of mountain ranges and so aren’t foliated. But contact metamorphic rocks are heated, and often made wet by water that comes from the magma or by surface water that is driven to convect through spaces in the rocks by the heat of the magma. The commonest mineral in many is amphibole, a water-bearing silicate with four silicons to eleven oxygens. The commonest rock of this sort contains a lot of amphibole, and is called amphibolite.

So Why Did North America Run Over the Spreading Ridge in the Pacific?

Good question. We’re not sure. But we do know that mid-ocean ridges are high because they are hot. Plates will slide off high spots, heading toward low places. So, North and South America are being pushed westward because they are sliding off the mid-Atlantic spreading ridge. If the spreading center in the Pacific simply sat still for a long while (which it probably did, more-or-less), then eventually the Americas would get to it, which they seem to be doing now.

A Rocking Review

Peaceful Easy Obduction

The Eagles got a peaceful, easy feeling while going into the desert, but they didn’t tell us whether they planned to do a lot of geology on the way. Whatever; in this parody, you can get a peaceful, easy feeling about a whole mountain range, the beautiful Appalachians. The Proto-Atlantic Ocean really did close before re-opening as the modern Atlantic, acting like a very slow accordion. While the proto-Atlantic was closing, three "collisions" happened, raising mountains near the modern east coast of the US, and erosion of the mountains produced sand that now is the sandstone of the ridges of central Pennsylvania and other places along the Appalachians. The first two collisions—small obduction events—involved North America hitting island arcs containing explosive volcanoes formed at former subduction zones. The third collision was the major obduction event as the Proto-Atlantic disappeared, with Africa and Europe meeting the Americas as the great supercontinent of Pangaea was assembled.

Geologists long ago decided that the place where subduction occurs is a "subduction zone", but have been slow to adopt "obduction zone" for the place where obduction occurs. We just couldn't make the rhyme scheme work with "the mountain range formed where an obduction event happened", so we call it an obduction zone. No one is quite sure whether the mountains in our "obduction zone" were really as high as the Himalaya, or how many glaciers eroded the top of our obduction zone, but the mountains probably were quite high and at least some of them may have been glaciated. The diagrams in this rock video have been simplified a bit, to make it easier for you. You can see slightly more-complicated versions of the second and third collisions, and see why we simplified them.

So, relax, get out your Irish flute, and let’s go obducting.

Peaceful Easy Obduction
Click Here for Transcript for Peaceful Easy Obduction Video

[MUSIC PLAYING] RICHARD ALLEY: (SINGING) I like the way your folded mountains lay, waving smoothly across the land. I want to hike across your thrust faults today, with your ancient rocks on either hand. I get a peaceful, easy feeling, where so much history is shown, while I'm living, and I'm loving in your old obduction zone.

Photo-Atlantic slowly closed long ago, Old World drawing near the New. Subduction zones fed many a volcano, island arcs eruptions blew. See their ashes in your roadcuts, while small collisions sent down sand. And the mighty obduction was drawing close at hand.

I found out a long time ago, continents cannot sink down. But in collisions, they will fold and break. So they make deep roots and a mountain crown. Your roots were heated, metamorphic, while glaciers carved the peaks you'd grown. The Himalaya became the Smokies of your old obduction zone.

hen as the rivers washed the heights away, rocks down deep bobbed up to light. So I can feel them on your ridges today, and hold them in your valleys tonight, because I get a peaceful, easy feeling, so many secrets ours alone, while I'm living, and I'm loving in your old obduction zone.

[MUSIC PLAYING]

Credit: Dr. Richard Alley

Wrap Up

Review the Unit 4 Introduction

You have reached the end of Unit 4! Double-check the list of requirements on the Unit 4 Introduction page and the Course Calendar to make sure you have completed all of the activities listed there.

Unit 4 Overview

 
Click here to review the Unit 4 Overview and make sure you understand all the main topics.

Review of the main topics and ideas you encountered in Unit 4.

Plate Tectonics III: Obduction

  • In subduction, denser side sinks under less-dense side.
  • But continents and island arcs are too low-density to go down—”You can’t sink a continent.”
  • When they run into each other, OBDUCTION results, with folding, push-together (thrust) faulting, and thickening.
  • This makes the biggest mountain ranges—Appalachians (still high after 200 million years), Himalaya, etc.
  • Can even push older rocks on top of younger ones.

A Little History

  • Appalachians formed as proto-Atlantic closed.
  • Had subduction-zone volcanoes with big eruptions, island arcs colliding with continent, etc.
  • This ended when Africa and Europe hit the Americas and pushed up the Appalachians (Great Smokies, State College).
  • When the push-together ended, the great, hot pile of the Appalachians spread under its own weight, with Death-Valley-type faulting.
  • Thinning with spreading reduced pressure on mantle, inducing rising and melting (convection), giving Atlantic.

The Three Basic Styles

  • PUSH-TOGETHER: subduction (Olympic, Crater Lake, Mt. St. Helens) or obduction (Great Smokies).
  • PULL-APART: rifting/spreading/sea-floor-production (Death Valley).
  • SLIDE-PAST: faulting (San Andreas).
  • Can have intermediates (push-together while sliding past, or pull-apart while sliding past).
  • The three types of plate boundaries, plus hot-spot activity poking up through plates, give the great majority of mountain-building, earthquakes, volcanoes, etc.

Meanwhile, Out West:

  • As the Atlantic opens, Asia and Americas approach and narrow Pacific.
  • Subduction under western US initially cold rock, but as the continent moved toward the Pacific spreading ridge, hotter rock was forced down, scraped along under US rather than sinking deep, and rumpled up the lithosphere to make Rockies, etc., far inland.
  • Where the subduction zone reached and swallowed the ridge, rock is no longer going down under the west; the subduction zone was push-together plus slide-past, and the slide-past remains as the San Andreas Fault.
  • Where and when the push-together of the subduction ended, the pile of the western US spread under its own weight, giving Death Valley faulting.
  • (Things really a tad more complex than this, and some things out west aren’t explained—work for you?!—but this isn’t too far off.)

Old mountains & metamorphism

  • Upper layers float on lower layers.
  • When obduction collision thickens upper rocks, the mountains sticking up float on a root sticking down (like an iceberg, but bergs have 1/10 up and 9/10 down, mountains have 1/7 up and 6/7 down).
  • Cut off the top of an iceberg and the bottom bobs up; erode off the top of mountains and the bottom bobs up.
  • Bobbing-up of eroding mountains brings rocks to the surface that had been squeezed deep and hot.
  • Heating and squeezing turns sedimentary (pieces of older rocks) or igneous (frozen from melted rock) rocks into metamorphic rocks, often pretty with ores or gems.

Tsunamis

  • Undersea earthquakes, volcanoes, or landslides, or meteorite impacts, can move lots of water.
  • Makes a wave (a tsunami) that is long and low in the ocean, but the wavefront slows down as it enters shallow water, and the back catches up and piles up.
  • Most tsunamis tiny, but can run up on land to elevations above 1000 feet; 2004 Indian Ocean tsunami killed over 300,000 people.
  • Can’t stop tsunamis, but can give real-time warnings (earthquakes, etc., make seismic waves that go faster than the tsunamis; “listen” for them with seismometers, then warn people to go inland fast).
  • Can enforce zoning codes to build in safe places, and keep reefs and barrier islands healthy to break some of the tsunami energy.

Reminder - Continue to work on Exercise #2. See Course Calendar for specific dates.

Supplemental Materials

Following are some supplementary materials for Unit 4. While you are not required to review these, you may find them interesting and possibly even helpful in preparing for the quiz!

Comments or Questions?

 

Please feel free to send an email to ALL of the teachers and TA's through Canvas conversations with any questions. Failure to email ALL teachers and TA's may result in a delayed or missed response. See "How to send email in GEOSC 10" for instructions