Chapter 6 - Hypothesis Development

Chapter 6 Overview

This chapter discusses the third step of the SGAM, highlighted below in gold, Hypothesis Development.

Depiction of correlation betwen knowledge and effort in SGAM, highlighting step 3: hypothesis development
Structured Geospatial Analytic Process, Step 3

A hypothesis is often defined as an educated guess because it is informed by what you already know about a topic. This step in the process is to identify all hypotheses that merit detailed examination, keeping in mind that there is a distinction between the hypothesis generation and hypothesis evaluation.

If the analysis does not begin with the correct hypothesis, it is unlikely to get the correct answer. Psychological research into how people go about generating hypotheses shows that people are actually rather poor at thinking of all the possibilities. Therefore, at the hypothesis generation stage, it is wise to bring together a group of analysts with different backgrounds and perspectives for a brainstorming session. Brainstorming in a group stimulates the imagination and usually brings out possibilities that individual members of the group had not thought of. Experience shows that initial discussion in the group elicits every possibility, no matter how remote, before judging likelihood or feasibility. Only when all the possibilities are on the table, is the focus on judging them and selecting the hypotheses to be examined in greater detail in subsequent analysis.

When screening out the seemingly improbable hypotheses, it is necessary to distinguish hypotheses that appear to be disproved (i.e., improbable) from those that are simply unproven. For an unproven hypothesis, there is no evidence that it is correct. For a disproved hypothesis, there is positive evidence that it is wrong. Early rejection of unproven, but not disproved, hypotheses biases the analysis, because one does not then look for the evidence that might support them. Unproven hypotheses should be kept alive until they can be disproved. One example of a hypothesis that often falls into this unproven but not disproved category is the hypothesis that an opponent is trying to deceive us. You may reject the possibility of denial and deception because you see no evidence of it, but rejection is not justified under these circumstances. If deception is planned well and properly implemented, one should not expect to find evidence of it readily at hand. The possibility should not be rejected until it is disproved, or, at least, until after a systematic search for evidence has been made, and none has been found.

There is no "correct" number of hypotheses to be considered. The number depends upon the nature of the analytical problem and how advanced you are in the analysis of it. As a general rule, the greater your level of uncertainty, or the greater the impact of your conclusion, the more alternatives you may wish to consider. More than seven hypotheses may be unmanageable; if there are this many alternatives, it may be advisable to group several of them together for your initial cut at the analysis.

Developing Multiple Hypotheses

Developing good hypotheses requires divergent thinking to ensure that all hypotheses are considered. It also requires convergent thinking to ensure that redundant and irrational hypotheses are eliminated. A hypothesis is stated as an "if … then" statement. There are two important qualities about a hypothesis expressed as an "if … then" statement. These are:

  • Is the hypothesis testable; in other words, could evidence be found to test the validity of the statement?
  • Is the hypothesis falsifiable; in other words, could evidence reveal that such an idea is not true?

Hypothesis development is ultimately experience-based. In this experienced-based reasoning, new knowledge is compared to previous knowledge. New knowledge is added to this internal knowledge base. Before long, an analyst has developed an internal set of spatial rules. These rules are then used to develop possible hypotheses.

Looking Forward

Developing hypotheses and evidence is the beginning of the sensemaking and Analysis of Competing Hypotheses (ACH) process. ACH is a general purpose intelligence analysis methodology developed by Richards Heuer while he was an analyst at the Central Intelligence Agency (CIA). ACH draws on the scientific method, cognitive psychology, and decision analysis. ACH became widely available when the CIA published Heuer’s The Psychology of Intelligence Analysis. The ACH methodology can help the geospatial analyst overcome cognitive biases common to analysis in national security, law enforcement, and competitive intelligence. ACH forces analysts to disprove hypotheses rather than jump to conclusions and permit biases and mindsets to determine the outcome. ACH is a very logical step-by-step process that has been incorporated into our Structured Geospatial Analytical Method. A complete discussion of ACH is found in Chapter 8 of Heuer’s book.

General Approaches to Problem Solving Utilizing Hypotheses

Science follows at least three general methods of problem solving using hypotheses. These can be called the:

  • method of the ruling theory
  • method of the working hypothesis
  • method of multiple working hypotheses

The first two are the most popular but they can lead to overlooking relevant perspectives, data, and encourage biases. It has been suggested that multiple hypotheses offers a more effective way of overcoming this problem.

Ruling Theories and Working Hypotheses

Our desire to reach an explanation commonly leads us to a tentative interpretation that is based on a single case. The explanation can blind us to other possibilities that we ignored at first glance. This premature explanation can become a ruling theory, and our research becomes focused on proving that ruling theory. The result is a bias to evidence that disproves the ruling theory or supports an alternate explanation. Only if the original hypothesis was by chance correct does our analysis lead to any meaningful intelligence work. The working hypothesis is supposed to be a hypothesis to be tested, not in order to prove the hypothesis, but as a stimulus for study and fact-finding. Nonetheless, the single working hypothesis can become a ruling theory, and the desire to prove the working hypothesis, despite evidence to the contrary, can become as strong as the desire to prove the ruling theory.

Multiple Hypotheses

The method of multiple working hypotheses involves the development, prior to our search for evidence, of several hypotheses that might explain what are attempting to explain. Many of these hypotheses should be contradictory, so that many will prove to be improbable. However, the development of multiple hypotheses prior to the intelligence analysis lets us avoid the trap of the ruling hypothesis and thus makes it more likely that our intelligence work will lead to meaningful results. We open-mindedly envision all the possible explanations of the events, including the possibility that none of the hypotheses are plausible and the possibility that more research and hypothesis development is needed. The method of multiple working hypotheses has several other beneficial effects on intelligence analysis. Human actions are often the result of several factors, not just one, and multiple hypotheses make it more likely that we will see the interaction of the several factors. The beginning with multiple hypotheses also promotes much greater thoroughness than analysis directed toward one hypothesis, leading to analytic lines that we might otherwise overlook, and thus to evidence and insights that might never have been considered. Thirdly, the method makes us much more likely to see the imperfections in our understanding and thus to avoid the pitfall of accepting weak or flawed evidence for one hypothesis when another provides a more possible explanation.

Drawbacks of Multiple Hypotheses

Multiple hypotheses have drawbacks. One is that it is difficult to express multiple hypotheses simultaneously, and therefore there is a natural tendency to favor one. Another problem is developing a large number of hypotheses that can be tested. A third possible problem is that of the indecision that arises as an analyst balances the evidence for various hypotheses, which is likely preferable to the premature rush to a false conclusion.

Memory Aid

Actions That Help the Analyst Develop Hypotheses

Action 1: Brainstorming. Begin with a brainstorming session with your knowledge team to identify a set of alternative hypotheses. Focus on the hypotheses that are:

  • logically consistent with the theories and data uncovered in your grounding;
  • address the quality and relationships of spaces.

State the hypotheses stated in an "if ... then" format, for example:

  • If the DC Shooter is a terrorist, then the geospatial pattern of events would be similar to other terrorist acts.
  • If the DC Shooter is a serial killer, then the geospatial pattern of events would be similar to other serial killers.

Action 2: Review the hypotheses for testability, i.e., can evidence be could found to test the validity of the statement.

Action 3: Check the hypotheses for falsifiability, i.e., could evidence reveal that such an idea is not true.

Action 4: Combine redundant hypotheses.

Action 5:Consider the elimination of improbable and unproven hypotheses.