GEOG 468
GIS Analysis and Design

Geospatial Reasoning

PrintPrint

Reasoning

The three well known reasoning processes trace the development of analytic beliefs along different paths. Inductive reasoning reveals “that something is probably true," deductive reasoning demonstrates “that something is necessarily true.” It is generally accepted that both are limited: inductive reasoning leads to multiple, equally likely solutions, and deductive reasoning is subject to error. Therefore, a third aid to judgment, abductive reasoning, showing “that something is plausibly true,” is used to offset the limitations of the others. While analysts who employ all three guides to sound judgment stand to be the most persuasive, fallacious reasoning or mischaracterization of rules, cases, or results in any of the three can affect reasoning using the others.

  • Inductive reasoning, moving from the specific case to the general rule, suggests many possible outcomes, or the range of what might happen in the future. However, inductive reasoning lacks a means to distinguish among outcomes. An analyst has no way of knowing whether a solution is correct.
  • Deductive reasoning, on the other hand, moves from the general to the specific. Deductive reasoning becomes essential for predictions. Based on past perceptions, certain facts indicate specific outcomes. If, for example, troops are deployed to the border, communications are increased, and leadership is in defensive bunkers, then war is imminent. However, if leadership remains in the public eye, then these preparations indicate that an exercise is imminent.
  • Abductive reasoning reveals plausible outcomes. Abductive reasoning is the process of generating the best explanation for a set of observations. When actions defy accurate interpretation through existing paradigms, abductive reasoning generates novel means of explanation. In the case of predictions, an abductive process presents an “assessment of probabilities.” Although abduction provides no guarantee that the analyst has chosen the correct hypothesis, the probative force of the accompanying argument indicates that the most likely hypothesis is known and that actionable intelligence is being developed.

Geospatial Reasoning

It is not too far of a stretch to say that people who are drawn to the discipline of geography have minds accustomed to assembling information into three-dimensional mental schemas. We construct schemas in our mind, rotate them, and view them from many angles. Furthermore, the experienced geospatial professional imagines spatial schemas influenced in the fourth dimension, time. We mentally replay time series of the schema. So easy is the geospatial professional’s ability to assemble multidimensional models that the expert does it with incomplete data. We mentally fill in gaps, making an intuitive leap toward a working schema with barely enough data to perceive even the most rudimentary spatial patterns. This is a sophisticated form of geospatial reasoning. Expertise increases with experience because as we come across additional schemas, our mind continuously expands to accommodate them. This might be called spatial awareness. Being a visual-spatial learner, instead of feeling daunted by the abundance and complexity of data, we find pleasure in recognizing the patterns. Are we crazy? No, this is what is called a visual-spatial mind. Some also call these people right brain thinkers.

The concept of right brain and left brain thinking developed from the research of psychobiologist Roger W. Sperry. Sperry discovered that the human brain has two different ways of thinking. The right brain is visual and processes information in an intuitive and simultaneous way, looking first at the whole picture then the details. The left brain is verbal and processes information in an analytical and sequential way, looking first at the pieces then putting them together to get the whole. Some individuals are more whole-brained and equally adept at both modes.

The qualities of the Visual-Spatial person are well documented but not well known (Visual-Spatial Resource). Visual-spatial thinkers are individuals who think in pictures rather than in words. They have a different brain organization than sequential thinkers. They are whole-part thinkers who think in terms of the big picture first before they examine the details. They are non-sequential, which means that they do not think and learn in the step-by-step manner. They arrive at correct solutions without taking steps. They may have difficulty with easy tasks, but show a unique ability with difficult, complex tasks. They are systems thinkers who can orchestrate large amounts of information from different domains, but they often miss the details.

Sarah Andrews likens some contrasting thought processes to a cog railway. Data must be in a set sequence in order to process it through a workflow. In order to answer a given question, the thinker needs information fed to him in order. He will apply a standardized method towards arriving at a pragmatic answer, check his results, and move on to the next question. In order to move comfortably through this routine, he requires that a rigid set of rules be in place. This is compared with the geospatial analyst who grabs information in whatever order, and instead of crunching down a straight-line, formulaic route toward an answer, makes an intuitive, mental leap toward the simultaneous perception of a group of possible answers. The answers may overlap, but none are perfect. In response to this ambiguity, the geospatial analyst develops a risk assessment, chooses the best working answer from this group, and proceeds to improve the estimate by gathering further data. Unlike, the engineer, whose formulaic approach requires that the unquestioned authority of the formula exist in order to proceed, the geospatial intelligence professional questions all authority, be it in the form of a human or acquired data.